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Abstract— Role-based access control is an important access control method for securing computer systems. A role-based 

access control policy can be implemented incorrectly due to various reasons, such as programming errors. Defects in the 

implementation may lead to unauthorized access and security breaches. To reveal access control defects, this paper presents a 

model-based approach to automated generation of executable access control tests using predicate/transition nets. Role-

permission test models are built by integrating declarative access control rules with functional test models or contracts 

(preconditions and postconditions) of the associated activities (the system functions). The access control tests are generated 

automatically from the test models to exercise the interactions of access control activities. They are transformed into executable 

code through a model-implementation mapping that maps the modeling elements to implementation constructs. The approach 

has been implemented in an industry-adopted test automation framework that supports the generation of test code in a variety 

of languages. The full model-based testing process has been applied to three systems implemented in Java. The effectiveness 

is evaluated through mutation analysis of role-based access control rules. The experiments show that the model-based 

approach is highly effective in detecting the seeded access control defects. 

Index Terms—Access controls, security and privacy protection, testing tools, test design  
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1 INTRODUCTION

ole-based access control (RBAC) [3][22] is a popular 
access control method for restricting system access to 

authorized users. It assigns users to specific roles and 
grant permissions to each role according to the role's job 
responsibilities. According to a 2010 report [18] on the 
economic values of RBAC, the benefits of RBAC include 
more efficient provisioning, more efficient policy admin-
istration in an era of increased regulation of internal con-
trols, enhanced security and integrity, and enhanced or-
ganizational productivity. An RBAC policy consists of a 
set of declarative rules, defining which role is allowed to 
access what resources under which conditions. A correct-
ly specified RBAC policy may be implemented incorrectly 
for various reasons, such as programming errors, omis-
sions, misunderstanding of the requirements, and intri-
cate interplay between business logic and access control 
policy. The defects in an incorrect implementation may 
result in serious security problems, such as unauthorized 
accesses and escalation of privileges. Therefore, it is im-
portant to reveal the potential discrepancy between the 
RBAC specification and the actual implementation. 

To reveal access control defects in a system implemen-

tation, existing approaches to RBAC testing often focus 
on devising test cases with respect to individual RBAC 
rules. The main issue of testing individual rules, however, 
is that it cannot see the forest for the trees because access 
control activities are often interrelated to each other. In a 
library management system, for example, access control 
rules may be defined for such activities as borrow and 
return books, where a precondition of returning a book is 
that there is a borrowed book. It is difficult to cover all the 
interactions among access control activities by testing 
individual rules. Testing the individual borrow and re-
turn rules would also lead to duplicated tests – testing the 
return activity typically involves a borrow activity. In 
addition, it is important to test the way the system is able 
to correctly update the status of the objects. For instance, 
a book can be reserved, borrowed or returned. Updating 
object states correctly is crucial to triggering the appro-
priate access control rules. This task could only be per-
formed by running particular testing scenarios that exer-
cise interactions between the business logic and the access 
control mechanisms. 

In this paper, we take benefit from the high-level na-
ture of an RBAC policy to express it into a productive 
model aligned with functional requirements. This makes 
it feasible to apply a model-based approach to automated 
testing of RBAC policy. Model-based testing uses models 
of a system under test (SUT) for generating test cases [25]. 
It is an appealing approach to testing because of several 
potential benefits [21]. First, the modeling activity helps 
clarify test requirements and enhances communication 
between developers and testers. Second, automated test 
generation enables more test cycles and assures the re-
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quired coverage of test models. Third, model-based test-
ing can help improve fault detection capability due to the 
increased number and diversity of test cases. Neverthe-
less, studies have shown that the tester’s ability to build 
quality models and the required expertise in rigorous 
modeling are major barriers to the effective application of 
model-based testing [32]. In particular, there is little work 
on how to build access control test models in a structured, 
repeatable process. Existing literature typically focuses on 
what modeling notation is used and how tests are gener-
ated and executed. Another issue is that abstract tests 
generated from access control test models need to be 
transformed into concrete tests for execution, which can 
be a time-consuming process. As will be detailed in the 
related work section, these issues remain largely open. 

This paper presents a model-based testing approach 
for generating executable RBAC test code from a Model-
Implementation Description (MID), which consists of an 
RBAC test model and a Model-Implementation Mapping 
(MIM). The test model is constructed from the given 
RBAC policies and functional requirements according to 
which the SUT is designed and implemented. It is repre-
sented by a Predicate/Transition (PrT) net [4] [31]. PrT 
nets are high-level Petri nets, a well-studied formal meth-
od for system modeling and verification. Since an RBAC 
test model specified by a PrT net captures both data and 
control flows of test requirements, our approach can gen-
erate complete model-based tests, including specific test 
inputs and test oracles (expected results). These model-
level tests can further be converted into executable test 
code by using the given MIM, which maps the elements 
of the PrT net into the implementation constructs. Our 
approach has been implemented in MISTA, a framework 
for automated generation of test code in a variety of lan-
guages, including Java, C, C++, C#, PHP, and HTML [26] 
(MISTA is publicly available at http://cs.boisestate. 
edu/~dxu/research/MBT.html). The test code generated 
from the MID specification can be executed with the SUT 
to reveal potential access control defects.  

To evaluate our approach, we have conducted empiri-
cal studies using three Java applications. To assess the 
fault detection capability, we used mutation analysis of 
RBAC rules, where mutants are created by injection of 
policy violations into the implementation. A mutant is an 
access control policy in which there is a fault in one of the 
rules. The test cases are executed against the faulty policy 
to check if the tests are able to detect the seeded fault. A 
mutant is considered to be killed when the tests report a 
failure. Mutation analysis is a commonly used method for 
evaluating the effectiveness of testing techniques [7]. 
Since the injected faults would represent the defects that 
are likely to occur in the implementation, the percentage 
of mutants killed by the tests created from a testing tech-
nique is often a good indicator of the testing effectiveness 
[7] in terms of fault-detection capability. Our experiments 
have shown that the test cases generated by our approach 
killed 99.5% of the 1,912 mutants and that 71% of the exe-
cutable test code was generated automatically. 

The remainder of this paper is organized as follows. 
Section 2 reviews the related work. Section 3 introduces 

the RBAC model in this paper. Section 4 elaborates on 
constructing test models. Section 5 discusses test genera-
tion from test models. Section 6 presents the transfor-
mation of tests into executable code. Section 7 describes 
the empirical studies. Section 8 concludes this paper. 

2 RELATED WORK 

This paper is related to the research on model-based test-
ing of access control policies and the research on model-
ing and analysis of access control with Petri nets. This 
section reviews the literature from these perspectives.   

Masood et al. [14][15] have investigated a state-based 
approach to test generation for RBAC policies. They first 
construct a finite state model of the RBAC policy and then 
derive tests from the state model. This model essentially 
captures the behaviors of role assignment, rather than 
access control rules as used in this paper. In addition, PrT 
nets in our approach not only capture control flows, but 
also data flows (e.g., test data and contexts). Based on the 
Assurance Management Framework (AMF), Hu and Ahn 
[5] have proposed an approach to the generation of con-
formance tests of access control policies through con-
straint verification. Test cases are derived through verifi-
cation by either removing or negating the security con-
straints. This approach is not concerned with the coverage 
criteria of access control rules. Our approach not only 
provides structured processes for building test models, 
but also generates tests to exercise all access control rules 
and their contexts. Mallouli et al. [12] proposed a model-
based approach to testing access control policies by inte-
grating OrBAC (Organizational Based Access Control) 
rules into an initial functional model represented by an 
extended finite state machine (EFSM). This approach has 
been validated only on a small program with no attempt 
to estimate the fault detection capability of their tech-
nique. The above work is not concerned about generation 
of executable test code.  

 Li et al. [11] proposed an approach to test generation 
from security policies specified as OrBAC rules. It con-
sists of two steps: generation of test purposes from the 
OrBAC rules and generation of test cases from test pur-
poses. This approach focuses on generation of test pur-
poses from individual OrBAC rules. Our work integrates 
access control rules into an operational model and gener-
ates tests to cover different access control rules. Julliand et 
al. [8] have proposed an approach to generating security 
tests in addition to functional tests by re-using the func-
tional test model together with a new model of security 
properties defined by a security engineer. No explicit ac-
cess control model was used. Jürjens [9] has developed an 
approach for testing security-critical systems based on 
UMLsec models. Test sequences for access control proper-
ties are generated from UMLsec models to test the im-
plementation for vulnerabilities. To summarize, the exist-
ing work on model-based access control testing usually 
generates abstract model-level tests, not executable tests. 
Our approach produces executable test code by using a 
flexible mechanism for mapping modeling elements into 
implementation constructs. Pretschner et al. [20] have 
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investigated a model-based approach to testing RBAC 
polices. This approach aims at selection of test targets for 
individual access control rule. Such test targets cannot be 
directly executed on the SUT. This paper captures the 
interactions of access control rules and fills the gap be-
tween test targets and executable test generation.  

Martin et al. [13] have investigated techniques for test 
generation from access control policy specifications writ-
ten in XACML (OASIS eXtensible Access Control Markup 
Language). This implementation-based approach targets 
individual XACML rules. Our model-based approach 
builds access control test models from functional models 
and access control rules. It is applicable no matter wheth-
er or not the SUT is based on XACML. In addition, our 
approach considers issues caused by erroneous interac-
tions between the access control policy and the business 
logic. Blackburn et al. [1] have developed an approach to 
automated generation of functional security tests. Securi-
ty properties are translated to a T-VEC test specification. 
T-VEC tools are then used to automatically generate test 
vectors and requirement-to-test coverage metrics. Our 
approach not only provides structured processes for 
building test models, but also automatically generates 
executable test code. 

As a well-studied formal method, Petri nets have been 
applied to modeling and analysis of access control poli-
cies, which focuses on access control requirements and 
design [2] [6] [10] [17] [23]. Different from this literature, 
our work aims at finding access control defects in soft-
ware implementation through model-based testing. Based 
on Colored Petri Net Processes (CPNPs), Huang and 
Kirchner [6] presented several composition operators that 
preserve the properties of sub-policies when they are 
composed. The properties, including completeness, ter-
mination, consistency, and confluence, are defined with 
respect to CPNPs. The CPNP of an access control policy is 
said to be complete if an access control decision is reacha-
ble from any initial marking. Because the possible initial 
markings for a CPNP can be infinite, it is unclear how a 
complete set of initial markings can be obtained. Our ap-
proach defines access control properties with respect to 
roles, activities, objects, and contexts of access control 
rules. Shafiq et al. [23] applied Colored Petri nets (CPNs) 
to the modeling of access control policies, which can cap-
ture such constraints as cardinality, separation of duty, 
precedence, and dependency constraints. Reachability 
analysis and a set of consistency rules were used to detect 
undesirable states that represent erratic behavior of the 
system. Deng et al. [2] applied PrT nets for the modeling 
and analysis of access control system architectures. 
Mortensen [17] used CPNs to specify an industrial access 
control system for the purposes of automatic generation 
of product code (not test code). A common characteristic 
of the above related work is their focus on the modeling 
of access control policies, not the interplay between access 
control policies and system functions. In our approach, 
however, the access control test models are constructed 
by integrating functional models and access control rules 
through structured processes. Knorr [10] discussed dy-
namic access control in Petri net-based workflows. Since 

functional activities and access control needs are both 
specified, unnecessary access can be eliminated by deriv-
ing access rights from the workflow.  

3 THE RBAC MODEL 

The RBAC model in this paper follows the NIST RBAC 
model [3] [22] with a more general representation of role 
permission assignments (i.e., RBAC rules to be defined 
below). It consists of the following elements: 

 A set of roles R,  
 A role hierarchy HRR, a partial order relation 

on R. <r1, r2> denotes that r1 is a direct super-role 
of r2 or r2 is a direct sub-role of r1 (r2 inherits all 
permissions of r1),  

 A set of subjects/users (human or computer 
agents) Sub,  

 Role assignments Sub2R (one subject can play a 
set of roles),  

 A set of constraints on static separation of duties: 
SSODRR, where <r1, r2>∈ SSOD means that r1 
and r2 cannot be assigned to the same subject, 

 A set of constraints on dynamic separation of du-
ties: DSODRR, where <r1, r2>∈ DSOD means 
that r1 and r2 assigned to the same subject cannot 
be activated within the same session, and 

 A set of role permission/prohibition rules R.  

Let O be a set of objects (or resources), A be a set of 
operations (called activities related to the resources), C be 
a set of contexts (representing Boolean expression con-
straints, for instance temporal contexts, location-based 
context etc.), and {Permission, Prohibition} be a set of au-
thorization types. 

Definition 1 (RBAC rule). An RBAC rule is a 5-tuple <r, o, 
a, c, >, where rR, oO, aA, cC, and {Permission, 
Prohibition}. It means that role r’s activity a on object o is 
permitted (when =Permission) or prohibited (when = 
Prohibition) when context c holds. 

In a library management system (LMS), for example, 
the set of roles is {student, teacher, director, secretary, admin, 
borrower, personnel}, the role hierarchy is {<borrower, stu-
dent>, <borrower, teacher>, <personnel, director>, <personnel, 
secretary>} (borrower is the super-role of student, whereas 
teacher and personnel is the super-role of director and secre-
tary), SSOD ={<borrower, personnel>, < admin, borrower>}, 
DSOD={<admin, director>}, the set of objects is {book, bor-
rower Account, personnelAccount}, and the set of activities 
is {BorrowBook, ReserveBook, GiveBackBook, AdminActivity, 
ManageAccess, CreateAccount, ModifyAccount, DeliverBook, 
FixBook}, and the set of contexts is {day(WD), day(HD), day 
(MD)}, where WD, HD, and MD refer to working day, 
holiday, and maintenance day, respectively. In Table 1, 
rules 1-6 are specified for the borrower role. day(HD) can 
also be interpreted as day(d)  d=HD, where d is a varia-
ble. According to rule 1, a borrower is not allowed to give 
back books on holidays. According to rule 3, a borrower 
is allowed to borrow books on working days. 

Given a set of specified RBAC rules, there can be situa-
tions under which neither permission nor prohibition is 
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specified. We treat these situations as “undefined condi-
tions” and extend the set of authorization types to {Per-
mission, Prohibition, Undefined}. From security assurance 
perspective, the undefined conditions must be tested be-
cause they likely lead to security holes in an implementa-
tion. To generate tests for these conditions, test modeling 
needs to cover both defined and undefined access control 
conditions. Our approach can automatically find such 
undefined conditions for a given set of RBAC rules. This 
paper will not elaborate on this due to the focus on test 
modeling and test generation. More details can be found 
in [29]. In the following, we discuss a few examples.  

 In Table 1, rules 1-6 are the specified access control 
conditions whereas rules 7-10 are added according to the 
undefined conditions. Among the specified rules 1-6, 
rules 2 and 3 are the only ones that are related to activity 
BorrowBook for borrower. Their contexts are day(HD) and 
day(WD). They do not cover maintenance days (MD) – 
whether a borrower can borrow books on maintenance 
days is not defined. Thus rule 7 is added. This is similar 
for ReserveBook (rule 8) and GiveBackBook (rule 9). Consider 
FixBook for borrower. There is no specified rule for FixBook 
under any context because it is a responsibility of secre-
tary. From testing perspective, we need to test whether a 
borrower is allowed to perform FixBook. Thus we add rule 
10, where day(d) is true for any d {HD, WD, MD}. Apply-
ing all activities to each role may require many rules to 
complete the specification. To deal with the complexity, 
our approach allows tests to be generated with respect to 
various coverage criteria and can reduce the search space 
by using partial ordering and pairwise combination tech-
niques. This will be discussed in Section 6. 

The above RBAC specification in our approach sup-
ports all four levels of the NIST RBAC model [22], includ-
ing flat, hierarchical, constrained, and symmetric RBAC. 
Flat RBAC has no role hierarchy, where hierarchical 
RBAC uses role hierarchies. Handling of role hierarchies 
in our approach will be discussed below. Constrained 
RBAC uses static and dynamic constraints to deal with 
separation of duties. In our approach, SSOD and DSOD 
specify the pairs of roles that cannot be assigned or acti-
vated together. Symmetric RBAC adds the notion of role 
permission review, which allows determining permis-
sions of operations on objects assigned to specific roles. 
This is addressed by RBAC rules defined over roles, op-

erations, and objects. As a more general formalism of 
permission specification, the RBAC rules also allow the 
specification of access contexts and prohibitions (i.e., neg-
ative permissions [22]).  

In a role hierarchy, each role r inherits all permissions 
(i.e., RBAC rules) from its super roles. Let S(r) be the set of 
all super-roles of role r, and (r) be the set of all rules with 
respect to r, including the rules defined for r and its super 
roles. (r) = {<r, o, a, c, >: <r, o, a, c, >R}  {<r’, o, a, c, 
>: <r’, o, a, c, >R  r’ S(r) }. In this paper, we use (r) 
to build role-permission test models that involve role r 
(refer to sections 4.2-4.4). In the above LMS example, stu-
dent, as a sub-role of borrower, inherits all the RBAC rules 
in Table 1. These rules will be used to build the role-
permission test model for student as a running example.  

4 CONSTRUCTING RBAC TEST MODELS 

RBAC testing involves testing of role-permission assign-
ments (i.e., rules) and testing of user-role assignments 
with SSOD and DSOD constraints. We present two meth-
ods for constructing role-permission test models, discuss 
modeling of user-role assignments, and describe analysis 
of test models. Before describing test modeling and anal-
ysis, we first introduce PrT nets adapted from [28] [31]. 

 
4.1 PrT Nets for Test Modeling 

Suppose constants start with an upper-case letter or a 
digit, and variables start with a lower-case letter. A term 
is a constant, a variable, or an expression f(t1,...,tn) of n 
arguments, where f is a function symbol and each ti is a 
term. A term is called a ground term if it has no free vari-
able. A label is a tuple of terms. Let ∑l be a set of labels 
and ∑f be a set of first-order logic formulas.   

Definition 2 (PrT net) A PrT net N is a tuple <P, T, F, I, L, , 
M0>, where: 
(1)  P is a finite set of places (also called predicates),  
(2) T is a finite set of transitions, 
(3) F is a finite set of normal arcs from places to transi-

tions and from transitions to places, i.e., F	⊆ P× � ∪ 
T× �,  

(4) I is a finite set of inhibitor arcs from places to transi-
tions (i.e., I	⊆ P× �),  

(5) L: FI  ∑l is a labeling function on arcs FI. L(f) is 
the label for arc f FI. When the label of an arc is 
not specified, the default label is a no-argument tuple 
< >, 

(6) : T ∑f is a guard function on T. The guard condi-
tion of transition t, (t), is a first-order logical formu-
la, which can evaluate true or false, 

(7) M0 is a set of one or more initial markings.  
 
The PrT nets in this paper are a lightweight version of 

the original PrT nets [4] in that (a) arcs are labeled by tu-
ples of terms, rather than formal sums c1l1+c2l2+..+cnln (i.e., 
coefficient ci of tuple li is 1 for all 1in) and (b) tokens are 
tuples of ground terms rather than a formal sum. This 
simplification has resulted in efficient verification tech-
niques [31]. We have successfully applied the above 
lightweight PrT nets to the modeling and analysis of var-

TABLE 1 
RBAC RULES FOR THE BORROWER/STUDENT ROLE 

No. Object Activity Context Auth_Type 

1 Book GiveBackBook day(HD) Prohibition 

2 Book BorrowBook day(HD) Prohibition 

3 Book BorrowBook day(WD) Permission 

4 Book GiveBackBook day(WD) Permission 

5 Book ReserveBook day(HD) Prohibition 

6 Book ReserveBook day(WD) Permission 

7 Book BorrowBook day(MD) Undefined 

8 Book ReserveBook day(MD) Undefined 

9 Book GiveBackBook day(MD) Undefined 

10 Book FixBook day(d) Undefined 
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ious systems [28] [30] [31]. Also different from the Petri 
nets in the literature, we allow multiple initial states to be 
associated with the same net structure to represent differ-
ent sets of test data. This makes it convenient to partition 
a large test data set into smaller ones so as to improve the 
effectiveness of test generation. Suppose m0  M0 is an 
initial marking.  m0={m0 (p): pP}, where m0 (p) is the set 
of tokens residing in place p. A token in p is a tuple of 
ground terms<X1, …, Xn>, denoted as p(X1, …, Xn). The 
zero-argument token is denoted as <>. For token <> in p, 
we simply denote it as p. We also associate a transition 
with a list of variables as formal parameters, if any.  

Fig. 1 shows a sample PrT net, where available, day, and 
borrowed are places (circles); BorrowBook and GiveBackBook 
are transitions (solid rectangles). The guard condition of 
BorrowBook is d=WD. An arrow (e.g., from available to Bor-
rowBook) represents a normal arc. A bi-directional arc (arc 
without arrow) between n1 and n2 (e.g., day and Borrow-
Book) represents two directed arcs: one from n1 to n2 and 
the other from n2 to n1. MISTA also supports hierarchical 
PrT nets, where a transition can be corresponding to an-
other PrT net (called subnet). To interpret a hierarchy of 
PrT nets, MISTA flattens the hierarchy into a single net by 
replacing each transition with the corresponding subnet. 

Let p and t be a place and transition, respectively. p is 
called an input (or output) place of t if there is a normal 
arc from p to t (or from t to p). p is called an inhibitor 
place if there is an inhibitor arc between p and t. Let t 
={pP: (p,t) F}, t ={pP: (t, p) F} and *t ={pP: (p,t) I} 
be the input places, the output places, and the inhibitor 
places of transition t, respectively. Let x/V be a variable 
binding, meaning that variable x is bound to a ground 
term V. A variable substitution is a set of variable bind-
ings. For example, {b/B1, d/WD} is a substitution where b 
and d are bound to B1 and WD, respectively. Let   be a 
variable substitution and l be an arc label. l/ denotes the 
token (tuple) obtained by substituting each variable in l 
for its bound value in . For instance, if l = <b> and  = 
{b/B1, d/WD}, then l/ = <B1>. 

Definition 3 (Enabledness) Transition t in a given net is said 
to be enabled by substitution  under a marking m0 if:  
(1) For each input place p of t (i.e., pt ), there is a token 

that matches l/, where l is the label of the input arc 
from p to t,  

(2) For each inhibitor place p of t (i.e., p*t), there is no 
token that matches l/, where l is the label of the in-
hibitor arc between p and t, and  

(3) The guard (t) evaluates true with respect to .  
Suppose {available(B1), day(WD), day(MD)} is an initial 

marking for the net in Figure 1. BorrowBook is enabled by 

 ={b/B1, d/WD} because token <B1> in the input place 
book matches <b>/, token <WD> in the input place day 
matches <d>/ , and the guard d=WD is true according to 
. A marking mi is said to be a deadlock or termination 
state if no transition is enabled under mi. 

Definition 4 (Transition Firing). Firing transition t enabled 
by substitution  under marking mi removes the matching 
token from each input place and adds a new token to each 
output place. This leads to new marking mi+1. Formally, 
mi+1 is defined as follows:  
(1) For each input place p of t, mi+1 (p) = mi (p) \{l/}, 

where l is the label of the arc from p to t and l/ is the 
matching token in p, 

(2) For each output place p of t, mi+1(p) = mi (p) ∪	 {l/}, 
where l is the label of the arc from p to t, and l/ is the 
new token added to p. 

In Definition 4, if p is both input and output place of t 
with the same arc label or the arc between p and t is bidi-
rectional, the matching token remains in p. If the new 
marking is not a deadlock or termination state, an ena-
bled transition can be fired according to Definition 5. 
Thus we can have sequences of transition firings. We de-
note a firing sequence as m0 [t11> m1… mi [ti+1i+1> mi+1… 
[tnn> mn, where ti(1in) is a transition, i(1in) is the 
substitution for firing ti, and mi (1in) is the marking 
after ti fires, respectively. A marking mn is said to be 
reachable from m0 if there is such a firing sequence that 
transforms m0 to mn. 

The above operational semantics of PrT nets provides a 
formal basis for the generation of tests when PrT nets rep-
resent test models (Section 5). The PrT nets in this paper 
also have declarative semantics - each transition is a first-
order logic formula and each transition firing is an appli-
cation of logical inference. Given a PrT net, each input 
(output) place p, together with the associated arc label 
<x1, …xn>,is corresponding to an input (output) predicate 
p(x1, …xn); each inhibitor place p, together with the asso-
ciated arc label <x1, …xn>,is corresponding to a negative 
predicate p(x1, …xn) (called inhibitor predicate). Each 
transition can be captured by logic formula PQ, where 
precondition P is the conjunction of the inhibitor predi-
cates, input predicates, and guard condition, and post-
condition Q is the conjunction of the output predicates 
and negation of each input predicate. P and Q are univer-
sally quantified. For BorrowBook in Fig. 1, P= available (b) 
day(d) d=WD and Q=available(b) borrowed(b)day(d). 
This lays the theoretical foundation for transforming de-
clarative rules and contracts (preconditions and postcon-
ditions in first-order logic) into a PrT net (Section 4.3). 

4.2 Building Role-Permission Test Models from 
Functional Test Models  

RBAC rules are security constraints on system func-
tions. If a functional test model is already available, we 
can integrate in it RBAC rules as constraints for the pur-
poses of access control testing. Our previous work has 
demonstrated that PrT nets can be used to build test 
models for automated functional testing of various appli-
cations [26]. One approach to building a functional test 
model as a PrT net (referred to as functional net) is to 

 
Fig. 1. A sample PrT net.  
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formulate a test design (or workflow) by using the build-
ing blocks of PrT nets, including sequence, condition, 
repetition, concurrency, and modularity/hierarchy. This 
is similar to programming, which transforms a program 
design into code by using the building blocks (sequence, 
if-then-else, for/while/repeat, multi-threading, clas-
ses/function calls) of the given programming language. 
More details on the methodology for building functional 
test models with PrT nets can be found in [27]. 

Let us consider building a functional net for a subset of 
the student role activities in LMS – borrow, reserve, and 
return book. A student may borrow an available book 
and return a borrowed book. This consists of a sequence 
of two activities. A student may reserve a book and then 
borrow it. This is also a sequence of activities. When a 
borrowed book is returned, it can be borrowed again – 
this implies a loop structure. When interested in a book, a 
student may borrow or reserve the book – this is a condi-
tion structure. Putting the above structures together 
would result in the functional net shown in Fig. 2.  

Now we discuss how to build a role-permission test 
model by integrating RBAC rules into a functional net. 
For the sake of simplicity, let us first assume that a func-
tional net involves the activities of a single role. An RBAC 
rule <r, o, a, c, > is related to a functional net only if activ-
ity a appears as a transition in the functional net. For ex-
ample, rules 1-9 in Table 1 for the activities BorrowBook, 
GiveBackBook, and ReserveBook are related to the functional 
net in Fig. 2. Suppose the RBAC rules in (r) related to a 
functional net are <r, o1, a1, c1, 1>,<r, o2, a2, c2, 2>, …, <r, 
om, am, cm, m>. We integrate each RBAC rule <r, oi, ai, ci, i> 
(1≤i≤m) into the functional net as follows: 

 If i=Permission and ci=true. Nothing is needed in 
that the rule is already represented by the activity 
transition ai, 

 If i=Permission and predicates in ci have corre-
sponding places in the net (new places may be 
created for the predicates if necessary). Add a bi-
directional arc between each place and the activity 
transition ai (because the access does not change 
the context) and add ci to the guard of ai. Consider 
rule 3 in Table 1 – student is allowed to borrow 
book only on a working day. The context day(d)  
d=WD becomes an additional constraint of Bor-
rowBook in the functional net. As shown in Fig. 3, 
we create a place day, add a bidirectional arc be-
tween place day and transition BorrowBook, label 
the arc with variable d, and add d=WD to the 
guard condition of BorrowBook. 

 If i=Prohibition, we add to the net a new transition 
Pai, which means ai is prohibited. This transition 
shares the input and inhibitor places (i.e., func-
tional preconditions) with ai. If the predicates in ci 
are corresponding to places, we add a bi-
directional arc between each place and transition 
Pai (because it does not change the context) and 
add ci to the guard of ai. Consider rule 2 in Table 1 
– student is not allowed to borrow books on holi-
day. This is represented by transition PBorrowBook 
in Fig. 3. 

 If i=Undefined, we handle the same way as Prohi-
bition except that the new transition is named Pai. 
Consider rule 7 in Table 1 – borrowing books on a 
maintenance day is undefined. This is represented 
by transition UBorrowBook in Fig. 3. 

The role-permission test model in Fig. 3 results from 

integrating rules 2, 3, and 7 in Table 1 into the functional 
net in Fig. 2. Other rules can be handled similarly except 
for rule 10 whose activity Fixbook does not appear in the 
functional net in Fig. 2. Since Fixbook is an activity of the 
secretary role, we can integrate rule 10 into the functional 
net of secretary. To represent multiple roles in a model, we 
use a global place role, which is connected to each transi-
tion with a bi-directional arc labeled by a role variable 
<r>. Which role can or cannot perform an activity is then 
represented by such a guard condition as r=R or r!=R, 
where R is a particular role. For example, rule 10 can be 
integrated into the secretary test model by using a new 
transition UFixBook, whose guard includes r=student. This 
transition means that fixbook is undefined for student. 

4.3 Building Role-Permission Test Models from 
Contracts  

When a functional net is not available, we can construct 
role-permission test models from contracts (preconditions 
and postconditions). We have developed this method for 
two considerations. First, design by contract [16] is a 
widely accepted approach to functional specification. 
Second, RBAC rules as security constraints on system 
functionality cannot be tested without involving system 
functionality. Access control testing requires understand-
ing of the preconditions and postconditions of the related 
activities. Consider testing the RBAC rule that a student is 
allowed to borrow books on working days. The test can-
not be performed unless the functional precondition “book 
is available” is satisfied. The accurate test oracle cannot be 

 
Fig. 2. Partial functional net of student activities in LMS 

Fig. 3. Partial role-permission model of student activities in LMS.  
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determined without knowing its postcondition. 
Contracts in the form of precondition  postcondition 

capture the dependencies among activities. Suppose avail-
able(b) means book x is available and borrowed(b) means 
book b is borrowed. The contract of GiveBackBook(b) is for 
any b, borrowed(b)  available(b). An activity can be associ-
ated with multiple contracts, representing different situa-
tions. A general precondition in the disjunctive form 
P1…Pn can be represented by multiple contracts 
P1Q1,…, PnQn. For example, the contract of Borrow-
Book(b) is for any b, available(b)  borrowed(b) availa-
ble(b) or for any b, reserved(b)  borrowed(b) reserved(b), 
where reserved(b) means book b is reserved. In this paper, 
the preconditions and postconditions are not necessarily 
accurate specifications of activity’s semantics. Instead, 
they focus specifications of test requirements. For exam-
ple, they may represent the ordering constraints on the 
activities involved in the rules. 

The process for building permission test models by in-
tegrating RBAC rules (r) with the contracts of related 
activities is as follows. First, we partition (r) into a 
number of subsets in terms of roles or relevant activities. 
In LMS, student and teacher are independent roles alt-
hough they have similar activities. So we group the RBAC 
rules for student and teacher into different subsets. Sec-
ond, each subset of the RBAC rules together with the con-
tracts of the relevant activities is integrated into a PrT net. 
This is done by converting each rule and the contract of 
the corresponding activity into a PrT net and composing 
the PrT nets of all rules into a single PrT net.  

Suppose the RBAC rules with respect to activity aA 
are <r, o, a, c1, 1>,<r, o, a, c2, 2>, …, <r, o, a, cm, m> and 
p1(x1)…pn(xn)q1(y1)…qk(yk) p1(x1)… pk(xk) is a 
contract of activity a. We handle each rule <r, o, a, 
ci=r1…ru, i> (1≤i≤m) as follows: 

 If i=Permission, we first convert the contract into a 
net with one transition named after activity a. 
Generally, predicates p1(x1),… ,pn(xn) in the pre-
condition are corresponding to the input places of 
the transition if they are not built-in functions such 
as arithmetic and relational operations (e.g., z=x+y 
and x>y). Built-in predicates are transformed into 
part of the transition’s guard condition. Predicates 
q1(y1),…,qk(yk) in the postcondition are correspond-
ing to the output places of the transition. The in-
put/output arcs are labeled by the arguments of 
the corresponding predicates. The input arc for pj 
is bi-directional if its negation pj does not appear 

in the postcondition. As the context in an RBAC 
rule is an additional precondition of the activity in 
the rule, the predicates r1,…,ru in the context lead 
to additional input places for the transition. The 
arc labels depend on the corresponding argu-
ments. If ri(zi) does not have negation and zi is a 
variable, then the arc label is <zi>. If ri(Zi) does not 
have negation and Zi is a constant, then the arc la-
bel is <zi>, and zi=Zi is added to the guard condi-
tion of the transition. If ri(Zi) is a negative predi-
cate and Zi is a constant, then the arc label is <zi>, 
and zi≠Zi is added to the guard condition of the 
transition. The arcs are bi-directional unless the ac-
tivity negates the context. Fig. 4(A) shows the net, 
where the arc between p1 and a is directed because 
p1(x1) is negated in the postcondition; the arc be-
tween pn and a is bi-directional as pn(xn) does not 
appear in the postcondition. 

 If i= Prohibition, we convert the precondition of 
the contract into a net with one transition named 
Pa (“P” denotes “prohibition”). The postcondition 
of the contract is not used because the activity is 
prohibited. The predicates in the precondition are 
corresponding to input places and the arcs are la-
beled by the corresponding arguments. The arcs 
are all bidirectional because, when the prohibited 
activity is attempted under the specified context, it 
should not change the system’s state. The context 
is handled in the same way as i=Prohibition. Fig. 
4(B) shows the net. 

 If i= Undefined, the transformation is similar to 
that for i= Prohibition. However, the transition is 
named by Ua (“U” denotes “Undefined”). 

The PrT nets for multiple rules and contracts are com-
posed into one net through place fusion - places with the 
same name in different nets become one place in the 
composed net. Transitions with the same name in differ-
ent nets become different transitions in the composed net 
(each of them is assigned a unique internal identity). The 
composed net can further be integrated with the nets 
from other RBAC rules and contracts.  

Fig. 5 shows the PrT net that covers all the rules in Ta-
ble 1 (except for transition UDeliverbook, which resulted 
from an additional rule). For clarity, an annotation is used 
to specify day as a global predicate, meaning that there is 
a bidirectional arc between day and each transition.  

According to the semantics of the PrT nets, the above 

 

(A) Permission net                      (B) prohibition net 

Fig. 4. PrT nets for permission and prohibition rules.  

 

Fig. 5. RBAC test model for the student role.  
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transformations have preserved the semantics of contracts 
and RBAC rules. For the sake of simplicity, the above dis-
cussion focuses on the rules for individual roles. It is easy 
to deal with multiple roles. We enhance the net with a 
new place, named role, new arcs from place role to each 
transition labeled with <r>, and additional guard condi-
tion for each transition (e.g., r=Student). In essence, we 
use role(r) as an additional precondition for each activity. 
In the ASMS case study (Section 7), for example, the com-
plete auction process involves various activities (e.g., cre-
ation of a sale, change of the state of a sale for auction, 
comments and bids by buyers) performed by different 
roles (e.g., seller, admin, and buyer). We build the test 
models based on the auction process (objects and activi-
ties), rather than individual roles. In brief, the transfor-
mation of RBAC rules into a PrT net essentially depends 
on the given subset of rules and the contracts of involved 
activities. If the given rules involve multiple roles, then 
the resultant net captures the behaviors of these roles. 

4.4 Discussions on Role-Permission Test Models  

After the structure of a PrT net for a role-permission test 
model is constructed, we define its initial markings by 
specifying test data (e.g., actual arguments of the activi-
ties) and test configurations (e.g., system settings and 
contexts in the RBAC rules. Consider the net in Fig. 5. Let 
M0={m0}, where m0={available(B1), day (WD), day(HD), 
day(MD)}. The net and M0 form a test model for the stu-
dent role. In m0, test data available(B1) can reach the activi-
ties of BorrowBook, ReserveBook and GivebackBook. 
day(WD), day(HD), and day(MD) represent all possible 
contexts in the rules so that the test model can cover all 
the contexts. 

Sections 4.2 and 4.3 present two different methods for 
constructing role-permission test models from functional 
nets and contracts, respectively. The two methods do not 
conflict with each other. According to the declarative se-
mantics of PrT nets, a contract can be converted into a PrT 
net. Consider the contract p1(x1)…  pn(xn)  q1(y1)… 
qk(yk) p1(x1)….in Section 4.3. Its corresponding net is 
similar to the net in Fig. 4(A), except for the places r1,…,ru 
introduced for the RBAC rules. Similarly, the correspond-
ing PrT nets for individual contracts can be composed 
into a single PrT net. Let M1(N, ) denote the test model 
obtained from functional net N and RBAC rules in Sec-
tion 4.2 and M2(C, )  denote the test model obtained 
from a set of contracts C and RBAC rules in Section 4.3. 
It is not difficult to prove that M1(N, )= M2(C, ) if N is 
the corresponding PrT net of C.  

Consider the contracts of BorrowBook, ReserveBook, and 
GiveBackBook in Table 2. The composed PrT net for these 
contracts is the same as the net in Fig. 2. In other words, 
applying the method in Section 4.3 to the contracts in Ta-

ble 2 and RBAC rules 2, 3, and 7 in Table 1 would result 
in the RBAC test model in Fig. 3, which was obtained by 
integrating the net in Fig. 2 with the same RBAC rules. 
Nevertheless, both methods are useful. They represent 
different modeling paradigms and build test models from 
different functional perspectives. Generally, functional 
nets are procedural whereas contracts are declarative. The 
former can be used to capture test workflows and the lat-
ter can specify logical dependencies between activities.  

4.5 Building User-Role Assignment Test Models  

A test model of user-role assignments specifies the test 
requirements related to assigning/deassigning users to 
roles, and activating/deactivating roles assigned to users. 
The assignment and activation must satisfy the static and 
dynamic constraints on separation of duties, i.e., SSOD 
and DSOD. As shown in Fig. 6, PrT nets can be used to 
formalize the above test requirements. In Fig. 6, places 
user and role represent users and roles, respectively. Plac-
es assignedRole and activatedRole represent the roles that 
are assigned to users and the roles that are activated, re-
spectively. Places ssod and dsod represent the role pairs in 
SSOD and DSOD, respectively. Two “assign” transitions 
intend to assign roles to users. The lower “assign” transi-
tion assigns role r2 to user u if u is not yet assigned to any 
role. The upper “assign” transition assigns role r2 to user u 
which already plays role r1 only when <r1, r2>  SSOD 
(i.e., the inhibitor arc from ssod to assign) and r1 r2 (i.e., 
the guard condition). Similarly, the lower “activate” tran-
sition activates role r2 assigned to user u when u has no 
activated role yet. The upper "activate” transition activates 
role r2 assigned to user u when u has an activated role r1, 
r1 r2, and <r1, r2>  DSOD. In addition, transitions de-
assign and deactivate remove role assignment and activa-
tion relations, respectively.  
 

4.6 Analyzing Test Models  

Ensuring correctness of a test model is critical to model-
based testing. Here we brief introduce our techniques for 
analyzing access control test models, including verifica-
tion of transition/state reachability, verification of dead-
lock states, verification of assertions, and simulation.  

Verification of transition reachability is to check if all 
transitions of a given PrT net are reachable from some 
given initial state. In an access control test model, each 
transition is corresponding to an access control activity. 
Thus, all transitions should be reachable from some given 

TABLE 2 
SAMPLE CONTRACTS IN LMS  

Activity Contracts (Precondition Postcondition) 
BorrowBook available(b)  borrowed(b) available(b) 

reserved(b)  borrowed(b) reserved(b) 
ReserveBook available(b) reserved(b) available(b)  
GiveBackBook borrowed(b)  available(b)  borrowed(b) 

 

Fig. 6. A test model for user-role assignments.  
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initial state. If there is one transition that is unreachable 
from the given initial states, then the transition will not be 
covered by any tests to be generated from the specified 
test model. In this case, either the net or the set of initial 
states is specified incorrectly. Suppose M0={m1}, where 
m1= {available(B1), day(WD), day(MD)}. UBorrowBook is not 
reachable from m1 in the net in Fig. 5. In this case, M0 is 
not specified properly. 

Verification of goal reachability is to check if a given goal 
state is reachable from some initial state of the given PrT 
net. If a goal state is known to be reachable (or unreacha-
ble), but the verification reports that it is unreachable (or 
reachable), then the net or the set of initial states is speci-
fied incorrectly. In Fig. 5, for example, {reserved(B1)} is a 
state reachable from m0={available(B1), day(WD), day(MD), 
day(HD)}. It can be reached by transition firings Reserve-
Book(b/B1, d/WD). However, if the arc from transition Re-
serveBook to place reserved is missing, the reachability veri-
fication would report that the above state is not reachable. 
A goal state is not limited to a specific marking. General-
ly, it is specified by a logical formula P  Q. The reacha-
bility analysis of P  Q checks to see if there exists a 
reachable marking that satisfies P  Q. For example, “to-
kenCount(reserved, x)  x>0” refers to states where the 
place reserved has at least one token.  This is expected to 
be reachable from the initial state {available(B1), day(WD), 
day(MD)} in the net in Fig. 5. 

Verification of deadlock states is to check if the given PrT 
net can reach any deadlock state under which no transi-
tion is firable. If the verification result is different from 
our expectation, then the given net is specified incorrect-
ly. For example, the net in Fig. 5 with the initial state 
{available(B1), day(WD), day(MD)} does not reach any 
deadlock states.   

Verification of assertion P  Q is to check if the given 
assertion is satisfied by all states reachable from the given 
initial states. Consider the net in Fig. 5 with the initial 
state {available(B1), day(WD), day(MD)}. Place reserved 
should never have more than one token. This requirement 
can be represented by an assertion “tokenCount (reserved, 
x)  x<2”. Generally, verification of goal reachability aims 
at the analysis of existential properties (“there exists”) 
whereas verification of assertions targets the analysis of 
universal properties (“for all”).  

MISTA also offers a visual simulator for stepwise exe-
cution of test models. At each state, the simulator shows 
the number of tokens in each place and highlights the 
enabled transitions. The user can choose to manually fire 
one enabled transition at a time or let MISTA continuous-
ly fire randomly selected enabled transitions. This is use-
ful for finding out unexpected behaviors in a test model. 

5 GENERATING RBAC TESTS 

This section describes how to generate model-level access 
control tests from RBAC test models.  

Definition 5 (Model-level RBAC test). Given an RBAC test 
model represented by a PrT net, a test case is a firing se-
quence m0 [t11> m1,…, [tnn> mn in the PrT net, where  
(1) m0 is the initial setting of the test, 

(2) Transition firings t11,…,tnn are test inputs, i.e., calls 
to the activities in RBAC rules or related to role as-
signment (assignment, de-assignment, activation, and 
de-activation). Suppose transition ti is corresponding 
to activity a(x1,…,xm) and substitution i={x1/u1, …, 
xm/um}. Then tii (1in) represents method call 
a(u1,…,um), where uj (1jm) is xj’ actual argument,  

(3) m0,…,mn are oracle values for respective test inputs tii 

(1in). For each place pP and each token 
<v1,…,vm> Mk

0(p), proposition p(v1,…,vm), when 
used as an oracle value, is expected to evaluate to 
true in the SUT.  

For example, suppose M0={m0}, m0={available(B1), day 
(WD), day(HD), day(MD)} for the model in Fig. 5. <m0, 
Reserve(b/B1,d/WD), m1, Borrow (b/B1,d/WD), m2, UGive-
BackBook(b/B1, d/HD), m3> is a firing sequence, where:   

m1={reserved(B1), day(WD), day(HD), day(MD)}, 
m2={borrowed(B1), day(WD), day(HD), day(MD)} 
m3={borrowed(B1), day(WD), day(HD), day(MD)} 

The firing sequence is a test case that exercises three 
RBAC rules: reserve books on working days (permitted), 
borrow books on working days (permitted), and give 
back books on holidays (prohibited). The states of book 
B1, reserved(B1), borrowed(B1), and borrowed(B1), represent 
the expected results of these activities. We assume that a 
prohibited activity, such as PGiveBackBook(b/B1, day/HD), 
should not change the system state. Here day(WD), 
day(HD), day(MD) are not used as test oracles because 
they represent system settings for access control contexts. 

Therefore, test generation from an RBAC test model in 
our approach is to produce firing sequences (test cases) 
from the RBAC test model according to a certain strategy 
(e.g., to achieve a coverage criterion). The test cases are 
structured as a test tree, where each path from an initial 
marking to a leaf is corresponding to a firing sequence 
(i.e., test case). Fig. 7 shows portion of the test tree gener-
ated for the reachability coverage of the test model in Fig. 
5. Node “1 new” represents the initial marking, i.e., the 
initial setting of each test. The path 11.11.1.2 exercises 
two RBAC rules. It first borrows book B1 on a working 
day, which should be permitted, and attempts to return 
the book on a holiday, which should be prohibited. In 
order to represent tests generated from multiple initial 
markings (i.e., different sets of test data and system set-
tings), the test tree uses an invisible root node whose 
child nodes are corresponding to the initial markings. 

MISTA supports automated test generation for several 
coverage criteria, such as reachability coverage, state cov-

 

Fig. 7 Portion of a test tree.  
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erage, and transition coverage. In a role permission test 
model, a transition is corresponding to one RBAC rule. In 
a role assignment test model, a transition is correspond-
ing to role assignment, de-assignment, activation, or de-
activation. A test suite is said to meet transition coverage 
if each transition is covered by at least one test. A test 
suite is said to meet state coverage if each state is covered 
by at least one test. A test suite is said to meet reachability 
coverage if each edge in the reachability graph (i.e., each 
transition firing under each reachable marking) is covered 
by at least one test. Reachability coverage subsumes tran-
sition coverage and state coverage because the reachabil-
ity coverage includes each reachable transition and each 
reachable state. The case studies in this paper use the test 
generator for reachability coverage as described in Algo-
rithm 1. It extends the previous implementation [26] with 
two techniques: partial ordering of concurrent firings and 
pairwise combinations of transition inputs. This extension 
can reduce the number of test sequences so as to deal 
with more complex test models.  

After initialization (line 1), Algorithm 1 creates a node 
for each initial marking and adds the node to the queue 
for expansion (lines 2-5). While the queue is not empty 
(line 6), it takes a node from the queue for expansion 
(lines 7-41). To expand a node, the algorithm first com-
putes and collects eligible firings for all transitions (lines 
8-29) and then creates a new child node for each of the 
eligible firings (lines 30-40). If the resultant marking of a 
firing has not appeared before, the new node for the firing 
is also added to the queue for further expansion (lines 37-
39).  In Algorithm 1, currentNode.marking refers to the 
marking in currentNode. allSubstitutions(t, currentNode. 
marking) denotes all substitutions that enable t under cur-
rentNode.marking (line 13). According to the definition of 
transition enabledness (Definition 3), Substitutions for a 
transition are obtained by unifying the arc label of each 
input or inhibitor place with the tokens in this place and 
evaluating the guard condition. The collection of all sub-
stitutions is computed through backtracking - after a sub-
stitution is obtained, backtracking is applied to the unifi-
cation process until all substitutions are found. In this 
case, all possible combinations of tokens in the input 
places are covered. Different from allSubstitutions(t, cur-
rentNode. marking),  pairwiseSubstitutions(t, currentNode. 
marking) (line 11) denotes all pairwise substitutions that 
enable t under currentNode.marking. Pairwise substitutions 
are substitutions where pairwise combinations of tokens 
in the input places are applied. Suppose there are 10 input 
places and each of them has 10 values (single argument 
tokens). There are 1010 combinations of these values. Us-
ing pairwise combination, however, 120 combinations can 
cover all pairs of the values. Algorithm 1 also offers an 
option of using partial ordering of concurrent firings 
(lines 16-29). The total ordering of n (n>1) concurrent fir-
ings yield n! sequences, where the partial ordering only 
produces one sequence. For a group of concurrent firings, 
only one of them is selected to create new node for expan-
sion (lines 20-27). Because the selected firing does not 
disable other concurrent firings in the group, its concur-
rent firings will remain enabled at the resultant marking 

and thus will be expanded only in the next levels. 
Algorithm 1: Test generation for reachability coverage 

Input: PrT net (P, T, F, I, L, , M0). 

Output: transition tree with dirty tests. 

Declare: root, newNode, currentNode are nodes; 

                queue is a queue of nodes; 

                firings is a list of firings; 

                newMarking is a marking; 

1. initialization: queue  ; root  create a node 

2. for each initial marking m0M0, do  

3.         create the initial state node as a child of the root 

4.         add the node into queue 

5. end for 

6. while queue   do  

7.     currentNode  first node in queue; 

8.     firings ； 

9.     for each transition t T, do  

10.         if use pairwise combination  

11.                 firings  firings ∪ {(t, ): pairwiseSubstitutions(t, 

currentNode.marking)}; 

12.         else 

13.                 firings  firings ∪{(t, ):  allSubstitutions(t, cur-

rentNode.marking)}; 

14.         end if 

15.     end for 

16.     if use partial ordering  

17.          tmpFirings  firings;  

18.          firings  ; 

19.          while tmpFirings  do 

20.                  f  first firing in tmpFirings; 

21.                  firings  firings ∪ {f}; 

22.                  remove f from tmpFirings; 

23.                  for each f’ tmpFirings do 

24.                         if f and f’ are concurrent 

25.                              remove f’ from tmpFirings; 

26.                         end if 

27.                  end for 

28.          end while 

29.     end if  

30.     for each (t, )  firings, do 

31.           newMarking  the marking of firing t with   

32.           newNode.parent  currentNode; 

33.           newNode.markingnewMarking; 

34.           newNode.transition  t;  

35.           newNode.substitution  ; 

36.           add newNode to currentNode.children; 

37.           if newMarking has not occurred in the tree 

38.                add newNode to queue; 

39.           end if   

40.      end for   

41. end while 

42. return root 

  
In addition, Algorithm 1 allows partitioning of test da-

ta due to the support of multiple initial states. We can 
divide a large set of test data into multiple initial states. 
Consider a transition with three input variables and each 
of them has 10 values. If all of the input values are speci-
fied in one initial state, the transition can be fired by 1,000 
different combinations of the inputs. If the input values 
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are specified into two initial states and each initial state 
contain 5 values of each input variable, then the possible 
firings of the transition are 250 (5*5*5*2). 

The complexity of Algorithm 1 is exponential to the 
size of the test model because it covers all the states and 
state transitions of the test model. The test tree can be 
very large although pairwise combination, parting order-
ing, and partitioning of test data can significantly reduce 
the number of tests.  

6 GENERATING EXECUTABLE TEST CODE 

In the previous discussions, the RBAC test models can be 
independent of the system implementation. Thus, tests 
generated from an RBAC test model are not immediately 
executable with the SUT. For example, the RBAC test 
model of the student role does not specify how BorrowBook 
can be performed against the SUT. Our approach allows a 
MIM specification to be created for converting all model-
level tests into executable code automatically. Although 
our approach supports the generation of test code in a 
variety of programming and scripting languages, this 
paper focuses on Java/JUnit (JUnit is a test framework for 
writing and executing Java test code). 

Definition 6 (MIM). A MIM specification for a PrT net is a 
7-tuple <ID, fo, fc, fa, fm, ls, h>, where: 
(1) ID is the identity of the SUT tested against the PrT 

net, 
(2) fo is the object function that maps constants in the PrT 

net to objects in the SUT. Given an constant X in the 
PrT net, fo(X) is an object in the SUT, 

(3) fc is the method mapping function that maps transi-
tions in the PrT net to methods (operations) in the 
SUT, 

(4) fa is the accessor function that maps places (predi-
cates) in the PrT net to accessors in the SUT, 

(5) fm is the mutator function that maps places (predi-
cates) in the PrT net to mutators in the SUT, 

(6) ls is the list of predicates in the PrT net that are im-
plemented as system settings in the SUT. These pred-
icates are called setting predicates, 

(7) h is the helper code function that defines user-
provided code to be included in the test code. 

Table 3 presents portion of a MIM in LMS. Object func-
tion fo maps objects in the RBAC test model to objects in 
the SUT. In LMS, for example, book B1 in the test model 
of the student role is corresponding to Book1Title, which a 
named constant referring to a book titled “Software Secu-
rity”. Method function fc maps activities in the test model 
to test operations in the SUT. For example, the implemen-
tation of BorrowBook is a method doPermittedBorrow. The 
methods for testing individual activities depend on how 
the SUT is implemented, e.g., what types of security ex-
ceptions will be reported. In our case studies, the excep-
tions for prohibited activities and undefined activities are 
SecuritPolicyViolationException and UndefinedSecuritPolicy-
Exception, respectively. Thus, a test for a permitted activi-
ty fails if the SUT throws an exception of SecuritPolicyVio-
lationException or UndefinedSecuritPolicyException. A test 
for a prohibited activity fails if no exception is thrown or 

the thrown exception is not SecuritPolicyViolationExcep-
tion. A test for an undefined activity fails if no exception 
is thrown or the thrown exception is not UndefinedSecu-
ritPolicyException. 

Accessor function fa maps predicates in the test model 
to accessors in the SUT. It is used for verifying oracle val-
ues. For example, book b is borrowed on day d in a test 
case, i.e., borrowed(b, d), can be verified by method isBook-
Borrowed(b). Mutator function fm maps the system setting 
predicates in ls to operations in SUT so that the SUT can 
be configured to a specific testing state. For example, 
predicate day in LMS is a system setting. As an access con-
trol precondition, it must be set correctly before the indi-
vidual activities can be called. Setting LMS to a working 
day, i.e., making day(WD) true, can be done by the follow-
ing statement: ContextManager.currentContext = Context-
Manager.workingday; Helper code function fh includes 
header code (e.g., package and import statements in Java), 
constant and variable declarations, setup, teardown, and 
methods for testing individual activities. All of this code 
will be included in the test code.  

 h(package): package statement.  
 h(import): import statements. 
 h(setup): Junit setup code. 
 h(teardown): Junit teardown code. 
 h(local): named constants, variables, and methods 

to be put in the generated test code. These defini-
tions can be used by fo, fc, fa and fm. 

To generate test code from a test tree produced by a 

TABLE 3 
PORTION OF THE MIM SPECIFICATION FOR THE RBAC TEST 

MODEL OF STUDENT IN LMS  

MIM  Model 
element 

Implementation 
element 

Notes 

fo B1 Book1Title Book1Title is a named constant in 
the helper code (see below) 

fc Reserve-
Book(b, d) 

doPermit-
tedReserve(b) 

doPermittedReserve is a test 
method in the helper code. It fails if 
an exception (particularly security-
related exception) is thrown. 

Borrow-
Book(b,d) 

doPermittedBor-
row(b) 

doPermittedBorrow is a test method 
in the helper code. It fails if an 
exception (particularly security-
related exception) is thrown. 

PGiveBack-
Book(b, d) 

 doProhibitedGive-
Back (b) 

doProhibitedGiveBack is a test 
method in the helper code. It fails if 
an exception (particularly security-
related exception) is thrown. 

fo bor-
rowed(b,d) 

isBookBorrowed(b) isBookBorrowed is a query method 
for verifying whether the status of 
the book is borrowed. 

reserved(b,d) isBookReserved(b) isBookReserved is a query method 
for verifying whether the status of 
the book is reserved 

fm day(WD) ContextManag-
er.currentContext = 
ContextManag-
er.workingday; 

It sets the concurrent context to 
working day. 

day(HD) ContextManag-
er.currentContext = 
ContextManag-
er.holiday; 

It sets the concurrent context to 
holiday day. 

ls day The access control context day is a 
system setting 

fh(PA
CKA
GE) 

package 
com.library.test.software.modeltest; 

Helper code for the package state-
ment of Java test code 

fh(CO
DE) 

private final String Book1Title = 
"Software security"; 
… 

Declarations and methods to be 
included in the test code  
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test generator (e.g., Algorithm 1), we create a JUnit test 
class (i.e., test suite) for the sub-tree of each initial state. 
Such a JUnit test class consists of test methods - each test 
method is corresponding to a firing sequence (test case) in 
the sub-tree. Algorithm 2 below describes how JUnit test 
classes are generated for a given test tree. For each JUnit 
test class, it first imports user-provided package and im-
port statements (line2), create the signature of the test 
class (line 3), declares an instance variable whose type is 
the given class ID (lines 4-6), and imports user-defined 
local code (line 5), setup code (lines 6-7), and teardown 
code (line 14). If the setup code is not provided in h, we 
generate a setup method for the initial state (lines 9-13). 
Each token p(a1, …, ak) in the initial state is converted into 
Java code for achieving the test configuration (lines 10-
12). To do so, we first transform model-level objects ai to 
implementation-level objects fo(ai) and then call the muta-
tor function fm (line 14). This is similar for dealing with 
system settings in test sequences (lines 20-22). Then Algo-
rithm 2 retrieves all tests for the initial state (lines 15-16) 
and generates a test method for each test m0[t11> m1,…, 
[tnn> mn (lines 17-29). For each transition firing tii, the 
test method configures the system settings for the test 
operation (lines 20-22), issues the test operation (line 23), 
and verifies the oracle values (lines 24-26). Note that each 
model-level object ai or bi is mapped to the implementa-
tion-level object fo(bi) or fo(bi). The test method does not 
include explicit calls to setup and teardown because these 
calls are executed automatically by JUnit. 

 
Algorithm 2.  Generation of test code in Java/JUnit 

Input: transition tree root, MIM = <ID, fo, fc, fa, fm, ls, h>. 

Output: Java/JUnit test code. 

Declare: initialStates is a set of initial markings; 

                initState is an initial marking; 

                leafNodes is a set of leaf nodes; 

                testSequences is a set of test sequences; 

                testSequence refers to one test sequence; 

1. for each initState  initialStates, do 

2.          create header according to h(package) and h(import);  

3.          create test class signature according to ID (the class under 

test) and the index of initState; 

4.          declare an instance variable whose type is ID;   

5.          import h(local) into this test class; 

6.          if h(setup) is defined 

7.               import h(setup) to this test class 

8.          else   // generation of setup according to initState    

9.                   create the signature of the setup method; 

10.                   for each pP and token <a1, …, ak> in p, do 

11.                          create  fm (p(fo(a1), …, fo(ak))) in the setup body; 

12.                   end for 

13.                  create the closing part of the setup method; 

14.         import h(teardown) to this test class 

15.         leafNodes  all leaf nodes corresponding to initState;  

16.         testSequences  all tests according to leafNodes; 

17.         for each m0 [t11>m1,…, [tnn>mn testSequences, do  

18.               create the signature of the JUnit test method; 

19.               for (i=1 to n) do 

20.                   for each input place p of ti such that pls and <a1, …, 

ak>  mi (p), do 

21.                         create system setting code fm(p(fo(a1), …, fo(ak))); 

22.                   end for 

23.                   create component call code, fc(c(fo(b1), …, fo(bk)));  

24.                   for each p(a1, …, ak) such that <a1, …, ak>mi (p) do 

25.                            create assertion fa (p(fo(a1), …, fo(ak))); 

26.                    end for 

27.               end for 

28.               create the closing part of the test method; 

29.         end for 

30. end for 

 
Consider the aforementioned sample test in Section 5: 
m0, ReserveBook(b/B1, d/WD), m1, BorrowBook(b/B1, 

d/WD), m2, PGiveBackBook(b/B1, d/HD), m3 
or simply: 
m0, ReserveBook(B1, WD), m1, BorrowBook(B1, WD), m2, 

PGiveBackBook(B1, HD), m3 
The generated JUnit test method is as follows:   

1.   public void test12() throws exception { 

2.      ContextManager.currentContext= ContextManag-

er.workingday; 

3.      doPermittedReserve(Book1Title); 

4.      assertTrue(isBookReserved(Book1Title));  

5.      ContextManager.currentContext=ContextManager.workingday; 

6.      doPermittedBorrow(Book1Title); 

7.      assertTrue(isBookBorrowed(Book1Title)); 

8.      ContextManager.currentContext = ContextManager.holiday; 

9.      doProhibitedGiveBack(Book1Title); 

10. assertTrue(isBookBorrowed(Book1Title)); 

11. } 

 
Lines 2-4 are generated for test operation Reserve-

Book(B1, WD) - setting up the testing context (line 2), issu-
ing the test operation (line 3), and verifying the oracle 
value (line 4). According to the object mapping in Table 3, 
B1 is corresponding to Book1Title. The precondition of 
ReserveBook(Book1Title, WD) is day(WD), and day is a sys-
tem setting predicate. Before issuing the test operation, 
we have to set the context to a working day – this is done 
by calling the mutator function for day(WD), i.e., Con-
textManager.currentContext = ContextManager. workingday; 
specified in Table 3 (refer to lines 20-22 of Algorithm 2). 
According to the method mapping function, the test op-
eration reserveBook(Book1Title, WD) is implemented by 
doPermittedReserve(Book1Title) (refer to line 23 of Algo-
rithm 2). The postcondition of reserveBook(Book1Title, WD) 
is reserved(Book1Title, WD). According to the accessor 
function for reserved(b,d), reserved(Book1Title, WD) is veri-
fied by  isBookBorrowed (Book1Title) in the implementation 
(refer to lines 24-26 of Algorithm 2). Similarly, lines 5-7 
are generated for BorrowBook(B1, WD), and lines 8-10 are 
generated for PGiveBackBook(B1, HD). 

7 EMPIRICAL STUDIES 

In this section, we describe our case studies for evaluating 
the fault detection capabilities of our approach. The case 
studies focus on testing of role permission assignments, 
rather than user-role assignments. We first introduce how 
the experiments were set up and then present the results 
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of our experiments. Finally, we discuss scalability issue as 
well as threats to validity in our studies.  

 
7.1 Experiment Setup 

Our case studies are based on three Java programs, LMS 
(Library Management System), VMS (Virtual Meeting 
System), and ASMS (Auction Sale Management System). 
Table 4 presents the main parameters of these programs.  

LMS offers services to manage books in a public li-
brary. The books can be borrowed and returned by the 
users of the library on working days. LMS distinguishes 
three types of users: public users who can borrow 5 books 
for 3 weeks, students who can borrow 10 books for 3 
weeks and teachers who can borrow 10 books for 2 
months. LMS is managed by an administrator who can 
create, modify, and remove user accounts. Books in the 
library are managed by a secretary who orders books or 
adds them when they are delivered. The secretary can 
also fix the damaged books in certain days dedicated to 
maintenance. When a book is damaged, it must be fixed. 
While it is being fixed, this book cannot be borrowed but 
a user can reserve it. The director of the library has the 
same accesses than the secretary and can consult the ac-
counts of the employees. The administrator and the secre-
tary can consult all user accounts.  All users can consult 
the list of books in the library.  

VMS offers simplified web conference services. It is 
used in an advanced software engineering course at Uni-
versity of Rennes 1, in France. The virtual meeting server 
allows the organization of work meetings on a distribut-
ed platform. When connected to the server, a user can 
enter or exit a meeting, ask to speak, eventually speak, or 
plan new meetings. Each meeting has a manager. The 
manager is the person who has planned the meeting and 
has set its main parameters (such as its name, its agenda, 
etc.). Each meeting may also have a moderator, appointed 
by the meeting manager. The moderator gives the floor to 
a participant who has asked to speak.  

ASMS allows users to buy or sell items online. A seller 
can start an auction by submitting a description of the 
item he wants to sell and a minimum price (with a start 
date and an ending date for the auction). Then usual bid-
ding process can apply and people can bid on this auc-
tion. One of the specificities of this system is that a buyer 
must have enough money in his account before bidding. 

The protocol of our experiment is as follows. First, we 
construct and analyze the test models. The test models of 
LMS and ASMS are created based on the contracts of re-

lated activities (Section 4.3), whereas the test models of 
VMS are constructed based on functional test models 
(Section 4.2). Second, we create the MIM specification for 
each test model as described in Section 6. Thus complete 
MID specifications are obtained for test code generation. 
Third, we use MISTA to generate test code from the MID 
specifications. Fourth, we execute the generated test code 
against the original version such that no test fails (the 
original version is considered as the correct version). If 
there is a failure, then the previous steps need to be re-
peated. Finally, we run the test code against each of the 
mutants of the RBAC rules.  

The mutants were created automatically by the MutaX 
tool (https://sites.google.com/site/servalteam/tools/ 
mutax) using five types of mutation operators: replacing 
permission rule with prohibition, replacing prohibition 
rule with permission, changing role, changing context, 
and adding a rule. They were created before this work 
was initiated. To evaluate the proposed approach, the 
following mutants were excluded: (a) mutants related to 
non-implemented activities because the tests could not be 
performed, (b) mutants with inconsistent access control 
rules. These mutants are typically created by the adding 
rule operator, and (c) mutants that have the same behav-
ior as the original version. 

Interested reader may contact the corresponding au-
thor to obtain a copy of the source code, mutants, and test 
models of the case studies. The implementation of our 
approach is included in the current release of MISTA (the 
URL for download is given in Section 1), which can re-
produce the test code from the test models used in the 
empirical studies. 

7.2 Results 

The results of our experiments are summarized in Table 
5. For LMS, there were 207 test cases in 3,185 lines of 
code. 56.2% of the test code was generated. The tests 
killed 233 out of 243 mutants, with an overall detection 
rate of 95.9%. The 10 remaining mutants not killed by the 
tests have the same nature – they contain a new rule cre-
ated by the adding-rule operator but can never cause se-
curity problems because the functional precondition of 
the activity in the added rule is not satisfiable. These mu-
tants do not violate the required security policies. Con-
sider a mutant with the following added rule that allows 
the admin role to return books on any day: (admin, Book, 
GiveBackBook, true, Permission). According to the required 
access control policies, none of the Borrower’s activities, 
BorrowBook, ReserveBook, and GiveBackBook, is intended for 
use by the admin role (no access control rules with respect 
to these activities are specified for admin). The above add-
ed rule can never enable the admin role to return books 
because the precondition of GiveBackBook- “the book is 
borrowed” (by the same person) - is unsatisfiable. This 
precondition can only be fulfilled by BorrowBook. In the 
mutant, however, Admin is not able to borrow books (Bor-
rowBook is undefined for admin). It is worth pointing out 
that our approach killed the mutant with the following 
added rule that allows admin to borrow books: (admin, 
Book, BorrowBook, true, Permission).  

TABLE 4 
SUBJECTS OF THE EMPIRICAL STUDIES 

Subject LOC #Classes 
/Methods 

#R #O 
 

#A #Rules 

LMS 3,204 62/335 5 4 12 33 

ASMS 10,703 122/797 6 6 23 107 

VMS 6,077 134/581 9 9 18 106 

LOC: lines of source code; #Classes/methods: number of classes and meth-

ods in the Java source code; #R: number of primitive roles tested; #O: 

number of objects; #A: number of activities; #Rules: total number of 

RBAC rules for primitive roles 
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For ASMS, the test models resulted in 501 tests. 81.9% 
of the 5,291 lines of test code was generated. The tests 
killed all of the 914 mutants. For VMS, the test models 
produced 225 tests. 68.1% of the test code was generated. 
The tests killed all of the 755 mutants. 

The mutation scores in our case studies are almost per-
fect for two main reasons. First, our approach is able to 
deal with undefined access control conditions. The tests 
generated to cover these situations are not only necessary 
but also powerful for revealing potential policy violations 
in an implementation. Second, the tests generated for the 
reachability coverage can cover all access control rules, 
objects, activities, and contexts due to automated test 
generation and execution. In comparison, transition cov-
erage has a low fault detection capability. As part of our 
initial experiment, the application of transition coverage 
to the student role in LMS only killed about 50% of the 
mutants because many access contexts were not exer-
cised.  

While the subject programs in our case studies have a 
reasonable size for the purposes of quantitative evalua-
tion (e.g., ASMS has more than 10,000 LOC), they have a 
small number of roles and shallow role hierarchies. In the 
literature on RBAC specification and analysis, the number 
of roles and depth of role hierarchies are important fac-
tors for measuring the complexity and scalability of 
RBAC systems [22] [24]. For a complex real-world RBAC 
system with a large number of roles and a deep role hier-
archy, our approach relies on the “divide and conquer” 
strategy and builds a number of test models to deal with 
subsets of roles and access control rules (rather than a 
single model for all roles and rules). Building test models 
(e.g., contracts and functional models) is essentially a 
manual process. It is also different from system modeling 
for design and verification. The former focuses on what 
needs to be tested with carefully selected test data, 
whereas the latter often deals with system-wide behav-
iors and input spaces. Thus, the complexity and scalabil-
ity of test generation for individual test models in our 
approach is not directly related to the total number of 
roles and the depth of role hierarchy in the SUT. Instead, 
it depends on the number of access control rules, number 
of objects, number of activities, number of access contexts, 
and test data involved in a given test model. In theory, 
the complexity of Algorithm 1 for reachability coverage is 
exponential to the sizes of these factors because it aims to 

cover every possible state transition. These factors deter-
mine the number of states and state transitions in the 
model.  

To evaluate the scalability of the implementation of 
our approach as a whole, including test generation (Algo-
rithm 1) and code generation (Algorithm 2), we have 
conducted a performance testing experiment using a test 
model with 8 different initial states. These initial states 
account for different complexity levels of the state space. 
Table 6 shows the results of our performance evaluation 
experiment, where Vi (1≤i≤8) denotes the model with the 
i-th initial state. The number of states ranges from 90 to 
19,000 (i.e., row A). The most complex case is V8 (the last 
column), which has 19,000 states, 79,623 state transitions 
in the test tree, 61,091 test cases, 658,309 test activities (i.e., 
transition firings) in all test cases, and 1.3 millions of lines 
of test code (the file size is 49.5MB). The Eclipse IDE for 
developing Java programs failed to open this test code file 
because it is too big. However, it only took less than 5 
seconds to generate the test tree (i.e., Algorithm 1) and a 
total of about 8 seconds to generate the test code (includ-
ing Algorithm 1 and Algorithm 2) on a MacBook Pro (In-
tel Core i7 2.6 GHz, 8 GB memory). For modified models 
with larger state space, MISTA is unable to generate test 
code because it runs out of memory. This experiment has 
demonstrated that the scalability of the current imple-
mentation is more constrained by space than time. Never-
theless, for all the test models in Table 6 (even for the 
simplest V1 with 90 states and 200 state transitions), 
manual test generation and management are almost in-
feasible. We believe our work is a major improvement to 
the existing manual practices. It is thus of practical utility.  

7.3 Threats to Validity 

The main result of our study is that our approach is highly 
effective in detecting access control defects. The key aspects 
that have led to this result include formalization of function 
nets and contracts, generation of access control tests with the 
reachability graph coverage, generation of executable test 
code, and mutation analysis of access control rules. In the 
following, we discuss how these aspects can be affected 
when our approach is applied to general software applica-
tions where access control is an important security mecha-
nism.  

First, in LMS and ASMS, we formalize the contracts of ac-

TABLE 5 
RESULTS OF THE EMPIRICAL STUDIES 

 #T LOC 
 

GLOC %GL
OC 

#M # K Score 

LMS 207 3,185 1,789 56.2% 243 233 95.9% 

ASMS 501 5,291 4,331 81.9% 914 914 100% 

VMS 225 2,538 1,728 68.1% 755 755 100% 
Total 933 11,01

4 
7,848 71% 1,912 1,902 99.5% 

#T: number of test cases generated; LOC: lines of executable JUnit test 

code; GLOC: lines of JUnit test code generated by MISTA; %GLOC: 

percentage of JUnit test code generated by MISTA; #M: number of access 

control mutants; #K:  number of mutants killed by the generated test 

cases; Score: mutation score = #K/#M. 

TABLE 6 
RESULTS OF PERFORMANCE EVALUATION 

 V1 V2 V3 V4 V5 V6 V7 V8 

A 90 300 600 1.3K 4K 7K 10K 19K 

B 200 800 1.7K 4.1K 15K 28K 41K 80K 
C 100 500 1.1K 2.8K 11K 21K 31K 61K 

D 600 3.1K 7.9K 22K 97K 201K 311K 658K 
E 1.8K 8K 19K 50K 203K 408K 614K 1.3M 
F 0.07 0.22 0.36 0.58 1.18 1.87 2.63 4.65 
G 0.13 0.30 0.42 0.94 1.46 2.43 3.64 8.14 

A: number of states; B: number of state transitions (i.e., edges) in the test tree; 

C: number of test cases (sequences); D: number of test activities (transition 

firings) in all test cases; E: lines of test code; F: test generation time in seconds 

(Algorithm 1); G: test code generation time in seconds (Algorithm 1 + Algo-

rithm 2). A, B, C, D, and E are rounded to the nearest ten, hundred, or thou-

sand. 
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tivities involved in the RBAC rules and transform them to-
gether with the RBAC rules into a PrT net. Because precon-
ditions and postconditions are used for test generation, they 
do not have to capture the precise semantics of activities. For 
example, they may only represent the ordering constraints of 
the activities under test. In the case studies, we were able to 
complete the formalization and transformation. For a real-
world application, this may not be an easy task. It can de-
pend on the application domain and complexity. In VMS, 
however, the role-permission test models are constructed 
from the functional test models. This method appears to be 
more practical.   

Second, the underlying assumption of using the reacha-
bility tree coverage for test generation is that the test model 
has a finite number of states. Due to the small sizes of the 
subject programs in the case studies, we were able to gener-
ate tests to cover all rules and combinations of objects, re-
sources, and contexts because the test models have a small 
number of states. Although RBAC test models are often re-
lated to partial behaviors of a SUT, generation of the above 
RBAC tests may not be feasible for complex real-world soft-
ware where access control is involved in large state space.  

Third, we were able to generate executable test code by 
completing the MIM specifications of the test models in the 
case studies. In the MIM specifications, calls to individual 
activities and verification of test oracles are programmed. 
Policy violations are assumed to be handled consistently - an 
exception is thrown when a prohibited or undefined activity 
is requested. For real-world software, the individual activity 
tests and the test oracles may not be completely program-
mable. If test execution requires human intervention, the 
number of tests that can be executed with limited budget 
and time would be decreased. This in turn can affect the 
effectiveness. Although our approach is applicable to a vari-
ety of languages supported by MISTA, the subject programs 
in the case studies were limited to Java applications.  

Finally, the evaluation of fault detection capability is 
based on the mutation analysis of RBAC rules. The mutants 
of RBAC rules were created and have been used in several 
studies by the group at University of Luxembourg before the 
proposed approach was initiated. The tasks of modeling, test 
generation, and test execution for the case studies were ac-
complished independently by the first author’s group at a 
different University. This assures the objectivity of mutation-
based evaluation. While we believe the mutants created by 
the five types of mutation operators have represented a vast 
majority of access control defects, they do not necessarily 
cover every possible fault in real-world software.  

8 CONCLUSION 

We have presented the tool-supported, model-based ap-
proach to automated conformance testing of RBAC policies. 
It provides structured processes for building role-permission 
test models from functional nets and contract specifications. 
It also automatically generates executable access control tests 
from the test models. The empirical studies using three Java 
programs have demonstrated that our approach is highly 
effective in detecting access control defects and that 56%-
82% of the executable test code is generated automatically.  

The contribution of this paper is twofold. First, we pre-
sent methods for constructing operational RBAC test models 
by integrating declarative RBAC rules with functional test 
models represented by PrT nets or contracts (preconditions 
and postconditions) of the associated access control activi-
ties. Because RBAC rules are non-functional constraints on 
associated activities or system functions, our methods show 
that the systematic testing of interrelated RBAC rules can be 
built upon functional requirements. Second, we present an 
approach to automated generation of executable test code 
for exercising the RBAC rules. Once the MID (test model and 
MIM) specification is completed, test generation and test 
execution would need no human intervention. This automa-
tion has facilitated our empirical studies that aimed at evalu-
ating the fault detection capability of our testing approach 
through mutation analysis. To the best of our knowledge, 
neither of these aspects has been addressed in the literature. 

This paper has focused on the testing of role-permission 
assignments and user-role assignments in RBAC, where 
users, roles, and permission rules are predefined. Our future 
work will extend the current approach to the testing of Ad-
ministrative RBAC (ARBAC) policies, which specify how 
administrators may change user-role assignments and role-
permission assignments [24]. Understanding and testing the 
effects of an ARBAC policy are critical to system security. 
The RBAC rules in our approach can be adapted to specify 
ARBAC permissions to perform administrative operations 
on user-role and role-permission assignments. Another di-
rection of future work is to extend the current approach for 
automated testing of obligation policies, which are critical to 
assuring information security and system accountability 
[19]. Obligation policies allow expressing actions that users 
should take to fulfill the responsibilities, in addition to usage 
control requirements, the mandatory actions related with 
some granted accesses. Obligation policies raise several chal-
lenges in automated test generation and execution. First, 
how can we generate test actions when obligation rules can-
not be enforced by a computer system? Second, since obliga-
tion is usually related to a time window, how can we gener-
ate time-sensitive obligation tests? Third, how can we meas-
ure the test adequacy of obligation policy, particularly with 
respect to timing conditions of obligation fulfillment and 
violation? To address these issues, we will first need to en-
hance PrT nets for building testable models of obligation 
policies.   
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