
IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID 1

Automated Model-Based Testing of Role-
Based Access Control Using

Predicate/Transition Nets
Dianxiang Xu, Michael Kent, Lijo Thomas, Tejeddine Mouelhi, Yves Le Traon

Abstract— Role-based access control is an important access control method for securing computer systems. A role-based

access control policy can be implemented incorrectly due to various reasons, such as programming errors. Defects in the

implementation may lead to unauthorized access and security breaches. To reveal access control defects, this paper presents a

model-based approach to automated generation of executable access control tests using predicate/transition nets. Role-

permission test models are built by integrating declarative access control rules with functional test models or contracts

(preconditions and postconditions) of the associated activities (the system functions). The access control tests are generated

automatically from the test models to exercise the interactions of access control activities. They are transformed into executable

code through a model-implementation mapping that maps the modeling elements to implementation constructs. The approach

has been implemented in an industry-adopted test automation framework that supports the generation of test code in a variety

of languages. The full model-based testing process has been applied to three systems implemented in Java. The effectiveness

is evaluated through mutation analysis of role-based access control rules. The experiments show that the model-based

approach is highly effective in detecting the seeded access control defects.

Index Terms—Access controls, security and privacy protection, testing tools, test design

—————————— ——————————

1 INTRODUCTION

ole-based access control (RBAC) [3][22] is a popular
access control method for restricting system access to

authorized users. It assigns users to specific roles and
grant permissions to each role according to the role's job
responsibilities. According to a 2010 report [18] on the
economic values of RBAC, the benefits of RBAC include
more efficient provisioning, more efficient policy admin-
istration in an era of increased regulation of internal con-
trols, enhanced security and integrity, and enhanced or-
ganizational productivity. An RBAC policy consists of a
set of declarative rules, defining which role is allowed to
access what resources under which conditions. A correct-
ly specified RBAC policy may be implemented incorrectly
for various reasons, such as programming errors, omis-
sions, misunderstanding of the requirements, and intri-
cate interplay between business logic and access control
policy. The defects in an incorrect implementation may
result in serious security problems, such as unauthorized
accesses and escalation of privileges. Therefore, it is im-
portant to reveal the potential discrepancy between the
RBAC specification and the actual implementation.

To reveal access control defects in a system implemen-

tation, existing approaches to RBAC testing often focus
on devising test cases with respect to individual RBAC
rules. The main issue of testing individual rules, however,
is that it cannot see the forest for the trees because access
control activities are often interrelated to each other. In a
library management system, for example, access control
rules may be defined for such activities as borrow and
return books, where a precondition of returning a book is
that there is a borrowed book. It is difficult to cover all the
interactions among access control activities by testing
individual rules. Testing the individual borrow and re-
turn rules would also lead to duplicated tests – testing the
return activity typically involves a borrow activity. In
addition, it is important to test the way the system is able
to correctly update the status of the objects. For instance,
a book can be reserved, borrowed or returned. Updating
object states correctly is crucial to triggering the appro-
priate access control rules. This task could only be per-
formed by running particular testing scenarios that exer-
cise interactions between the business logic and the access
control mechanisms.

In this paper, we take benefit from the high-level na-
ture of an RBAC policy to express it into a productive
model aligned with functional requirements. This makes
it feasible to apply a model-based approach to automated
testing of RBAC policy. Model-based testing uses models
of a system under test (SUT) for generating test cases [25].
It is an appealing approach to testing because of several
potential benefits [21]. First, the modeling activity helps
clarify test requirements and enhances communication
between developers and testers. Second, automated test
generation enables more test cycles and assures the re-

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————

 Dianxiang Xu is with the Department of Computer Science, Boise State
University, Boise, ID 83725, USA. E-mail: dianxiangxu@boisestate.edu.

 Michael Kent is with SDN Communications; Sioux Falls; SD 57104, USA.
E-mail: Michael.Kent@sdncommunications.com.

 Lijo Thomas is with Cognizant Technology Solutions; Teaneck; NJ 07666;
USA. E-mail: llijo.thomas@cognizant.com.

 Tejeddine Mouelhi is with itrust Consulting, Niederanven, Luxembourg.
Email: mouelhi@itrust.lu.

 Yves Le Traon is with the Interdisciplinary Centre for Security, Reliability
and Trust University of Luxembourg, Campus Kirchberg, L-1359, Luxem-
bourg, Luxembourg. E-mail: yves.leTraon@uni.lu.

R

2 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

quired coverage of test models. Third, model-based test-
ing can help improve fault detection capability due to the
increased number and diversity of test cases. Neverthe-
less, studies have shown that the tester’s ability to build
quality models and the required expertise in rigorous
modeling are major barriers to the effective application of
model-based testing [32]. In particular, there is little work
on how to build access control test models in a structured,
repeatable process. Existing literature typically focuses on
what modeling notation is used and how tests are gener-
ated and executed. Another issue is that abstract tests
generated from access control test models need to be
transformed into concrete tests for execution, which can
be a time-consuming process. As will be detailed in the
related work section, these issues remain largely open.

This paper presents a model-based testing approach
for generating executable RBAC test code from a Model-
Implementation Description (MID), which consists of an
RBAC test model and a Model-Implementation Mapping
(MIM). The test model is constructed from the given
RBAC policies and functional requirements according to
which the SUT is designed and implemented. It is repre-
sented by a Predicate/Transition (PrT) net [4] [31]. PrT
nets are high-level Petri nets, a well-studied formal meth-
od for system modeling and verification. Since an RBAC
test model specified by a PrT net captures both data and
control flows of test requirements, our approach can gen-
erate complete model-based tests, including specific test
inputs and test oracles (expected results). These model-
level tests can further be converted into executable test
code by using the given MIM, which maps the elements
of the PrT net into the implementation constructs. Our
approach has been implemented in MISTA, a framework
for automated generation of test code in a variety of lan-
guages, including Java, C, C++, C#, PHP, and HTML [26]
(MISTA is publicly available at http://cs.boisestate.
edu/~dxu/research/MBT.html). The test code generated
from the MID specification can be executed with the SUT
to reveal potential access control defects.

To evaluate our approach, we have conducted empiri-
cal studies using three Java applications. To assess the
fault detection capability, we used mutation analysis of
RBAC rules, where mutants are created by injection of
policy violations into the implementation. A mutant is an
access control policy in which there is a fault in one of the
rules. The test cases are executed against the faulty policy
to check if the tests are able to detect the seeded fault. A
mutant is considered to be killed when the tests report a
failure. Mutation analysis is a commonly used method for
evaluating the effectiveness of testing techniques [7].
Since the injected faults would represent the defects that
are likely to occur in the implementation, the percentage
of mutants killed by the tests created from a testing tech-
nique is often a good indicator of the testing effectiveness
[7] in terms of fault-detection capability. Our experiments
have shown that the test cases generated by our approach
killed 99.5% of the 1,912 mutants and that 71% of the exe-
cutable test code was generated automatically.

The remainder of this paper is organized as follows.
Section 2 reviews the related work. Section 3 introduces

the RBAC model in this paper. Section 4 elaborates on
constructing test models. Section 5 discusses test genera-
tion from test models. Section 6 presents the transfor-
mation of tests into executable code. Section 7 describes
the empirical studies. Section 8 concludes this paper.

2 RELATED WORK

This paper is related to the research on model-based test-
ing of access control policies and the research on model-
ing and analysis of access control with Petri nets. This
section reviews the literature from these perspectives.

Masood et al. [14][15] have investigated a state-based
approach to test generation for RBAC policies. They first
construct a finite state model of the RBAC policy and then
derive tests from the state model. This model essentially
captures the behaviors of role assignment, rather than
access control rules as used in this paper. In addition, PrT
nets in our approach not only capture control flows, but
also data flows (e.g., test data and contexts). Based on the
Assurance Management Framework (AMF), Hu and Ahn
[5] have proposed an approach to the generation of con-
formance tests of access control policies through con-
straint verification. Test cases are derived through verifi-
cation by either removing or negating the security con-
straints. This approach is not concerned with the coverage
criteria of access control rules. Our approach not only
provides structured processes for building test models,
but also generates tests to exercise all access control rules
and their contexts. Mallouli et al. [12] proposed a model-
based approach to testing access control policies by inte-
grating OrBAC (Organizational Based Access Control)
rules into an initial functional model represented by an
extended finite state machine (EFSM). This approach has
been validated only on a small program with no attempt
to estimate the fault detection capability of their tech-
nique. The above work is not concerned about generation
of executable test code.

 Li et al. [11] proposed an approach to test generation
from security policies specified as OrBAC rules. It con-
sists of two steps: generation of test purposes from the
OrBAC rules and generation of test cases from test pur-
poses. This approach focuses on generation of test pur-
poses from individual OrBAC rules. Our work integrates
access control rules into an operational model and gener-
ates tests to cover different access control rules. Julliand et
al. [8] have proposed an approach to generating security
tests in addition to functional tests by re-using the func-
tional test model together with a new model of security
properties defined by a security engineer. No explicit ac-
cess control model was used. Jürjens [9] has developed an
approach for testing security-critical systems based on
UMLsec models. Test sequences for access control proper-
ties are generated from UMLsec models to test the im-
plementation for vulnerabilities. To summarize, the exist-
ing work on model-based access control testing usually
generates abstract model-level tests, not executable tests.
Our approach produces executable test code by using a
flexible mechanism for mapping modeling elements into
implementation constructs. Pretschner et al. [20] have

AUTHOR XU ET AL.: TITLE 3

investigated a model-based approach to testing RBAC
polices. This approach aims at selection of test targets for
individual access control rule. Such test targets cannot be
directly executed on the SUT. This paper captures the
interactions of access control rules and fills the gap be-
tween test targets and executable test generation.

Martin et al. [13] have investigated techniques for test
generation from access control policy specifications writ-
ten in XACML (OASIS eXtensible Access Control Markup
Language). This implementation-based approach targets
individual XACML rules. Our model-based approach
builds access control test models from functional models
and access control rules. It is applicable no matter wheth-
er or not the SUT is based on XACML. In addition, our
approach considers issues caused by erroneous interac-
tions between the access control policy and the business
logic. Blackburn et al. [1] have developed an approach to
automated generation of functional security tests. Securi-
ty properties are translated to a T-VEC test specification.
T-VEC tools are then used to automatically generate test
vectors and requirement-to-test coverage metrics. Our
approach not only provides structured processes for
building test models, but also automatically generates
executable test code.

As a well-studied formal method, Petri nets have been
applied to modeling and analysis of access control poli-
cies, which focuses on access control requirements and
design [2] [6] [10] [17] [23]. Different from this literature,
our work aims at finding access control defects in soft-
ware implementation through model-based testing. Based
on Colored Petri Net Processes (CPNPs), Huang and
Kirchner [6] presented several composition operators that
preserve the properties of sub-policies when they are
composed. The properties, including completeness, ter-
mination, consistency, and confluence, are defined with
respect to CPNPs. The CPNP of an access control policy is
said to be complete if an access control decision is reacha-
ble from any initial marking. Because the possible initial
markings for a CPNP can be infinite, it is unclear how a
complete set of initial markings can be obtained. Our ap-
proach defines access control properties with respect to
roles, activities, objects, and contexts of access control
rules. Shafiq et al. [23] applied Colored Petri nets (CPNs)
to the modeling of access control policies, which can cap-
ture such constraints as cardinality, separation of duty,
precedence, and dependency constraints. Reachability
analysis and a set of consistency rules were used to detect
undesirable states that represent erratic behavior of the
system. Deng et al. [2] applied PrT nets for the modeling
and analysis of access control system architectures.
Mortensen [17] used CPNs to specify an industrial access
control system for the purposes of automatic generation
of product code (not test code). A common characteristic
of the above related work is their focus on the modeling
of access control policies, not the interplay between access
control policies and system functions. In our approach,
however, the access control test models are constructed
by integrating functional models and access control rules
through structured processes. Knorr [10] discussed dy-
namic access control in Petri net-based workflows. Since

functional activities and access control needs are both
specified, unnecessary access can be eliminated by deriv-
ing access rights from the workflow.

3 THE RBAC MODEL

The RBAC model in this paper follows the NIST RBAC
model [3] [22] with a more general representation of role
permission assignments (i.e., RBAC rules to be defined
below). It consists of the following elements:

 A set of roles R,
 A role hierarchy HRR, a partial order relation

on R. <r1, r2> denotes that r1 is a direct super-role
of r2 or r2 is a direct sub-role of r1 (r2 inherits all
permissions of r1),

 A set of subjects/users (human or computer
agents) Sub,

 Role assignments Sub2R (one subject can play a
set of roles),

 A set of constraints on static separation of duties:
SSODRR, where <r1, r2>∈ SSOD means that r1
and r2 cannot be assigned to the same subject,

 A set of constraints on dynamic separation of du-
ties: DSODRR, where <r1, r2>∈ DSOD means
that r1 and r2 assigned to the same subject cannot
be activated within the same session, and

 A set of role permission/prohibition rules R.

Let O be a set of objects (or resources), A be a set of
operations (called activities related to the resources), C be
a set of contexts (representing Boolean expression con-
straints, for instance temporal contexts, location-based
context etc.), and {Permission, Prohibition} be a set of au-
thorization types.

Definition 1 (RBAC rule). An RBAC rule is a 5-tuple <r, o,
a, c, >, where rR, oO, aA, cC, and {Permission,
Prohibition}. It means that role r’s activity a on object o is
permitted (when =Permission) or prohibited (when =
Prohibition) when context c holds.

In a library management system (LMS), for example,
the set of roles is {student, teacher, director, secretary, admin,
borrower, personnel}, the role hierarchy is {<borrower, stu-
dent>, <borrower, teacher>, <personnel, director>, <personnel,
secretary>} (borrower is the super-role of student, whereas
teacher and personnel is the super-role of director and secre-
tary), SSOD ={<borrower, personnel>, < admin, borrower>},
DSOD={<admin, director>}, the set of objects is {book, bor-
rower Account, personnelAccount}, and the set of activities
is {BorrowBook, ReserveBook, GiveBackBook, AdminActivity,
ManageAccess, CreateAccount, ModifyAccount, DeliverBook,
FixBook}, and the set of contexts is {day(WD), day(HD), day
(MD)}, where WD, HD, and MD refer to working day,
holiday, and maintenance day, respectively. In Table 1,
rules 1-6 are specified for the borrower role. day(HD) can
also be interpreted as day(d) d=HD, where d is a varia-
ble. According to rule 1, a borrower is not allowed to give
back books on holidays. According to rule 3, a borrower
is allowed to borrow books on working days.

Given a set of specified RBAC rules, there can be situa-
tions under which neither permission nor prohibition is

4 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

specified. We treat these situations as “undefined condi-
tions” and extend the set of authorization types to {Per-
mission, Prohibition, Undefined}. From security assurance
perspective, the undefined conditions must be tested be-
cause they likely lead to security holes in an implementa-
tion. To generate tests for these conditions, test modeling
needs to cover both defined and undefined access control
conditions. Our approach can automatically find such
undefined conditions for a given set of RBAC rules. This
paper will not elaborate on this due to the focus on test
modeling and test generation. More details can be found
in [29]. In the following, we discuss a few examples.

 In Table 1, rules 1-6 are the specified access control
conditions whereas rules 7-10 are added according to the
undefined conditions. Among the specified rules 1-6,
rules 2 and 3 are the only ones that are related to activity
BorrowBook for borrower. Their contexts are day(HD) and
day(WD). They do not cover maintenance days (MD) –
whether a borrower can borrow books on maintenance
days is not defined. Thus rule 7 is added. This is similar
for ReserveBook (rule 8) and GiveBackBook (rule 9). Consider
FixBook for borrower. There is no specified rule for FixBook
under any context because it is a responsibility of secre-
tary. From testing perspective, we need to test whether a
borrower is allowed to perform FixBook. Thus we add rule
10, where day(d) is true for any d {HD, WD, MD}. Apply-
ing all activities to each role may require many rules to
complete the specification. To deal with the complexity,
our approach allows tests to be generated with respect to
various coverage criteria and can reduce the search space
by using partial ordering and pairwise combination tech-
niques. This will be discussed in Section 6.

The above RBAC specification in our approach sup-
ports all four levels of the NIST RBAC model [22], includ-
ing flat, hierarchical, constrained, and symmetric RBAC.
Flat RBAC has no role hierarchy, where hierarchical
RBAC uses role hierarchies. Handling of role hierarchies
in our approach will be discussed below. Constrained
RBAC uses static and dynamic constraints to deal with
separation of duties. In our approach, SSOD and DSOD
specify the pairs of roles that cannot be assigned or acti-
vated together. Symmetric RBAC adds the notion of role
permission review, which allows determining permis-
sions of operations on objects assigned to specific roles.
This is addressed by RBAC rules defined over roles, op-

erations, and objects. As a more general formalism of
permission specification, the RBAC rules also allow the
specification of access contexts and prohibitions (i.e., neg-
ative permissions [22]).

In a role hierarchy, each role r inherits all permissions
(i.e., RBAC rules) from its super roles. Let S(r) be the set of
all super-roles of role r, and (r) be the set of all rules with
respect to r, including the rules defined for r and its super
roles. (r) = {<r, o, a, c, >: <r, o, a, c, >R} {<r’, o, a, c,
>: <r’, o, a, c, >R r’ S(r) }. In this paper, we use (r)
to build role-permission test models that involve role r
(refer to sections 4.2-4.4). In the above LMS example, stu-
dent, as a sub-role of borrower, inherits all the RBAC rules
in Table 1. These rules will be used to build the role-
permission test model for student as a running example.

4 CONSTRUCTING RBAC TEST MODELS

RBAC testing involves testing of role-permission assign-
ments (i.e., rules) and testing of user-role assignments
with SSOD and DSOD constraints. We present two meth-
ods for constructing role-permission test models, discuss
modeling of user-role assignments, and describe analysis
of test models. Before describing test modeling and anal-
ysis, we first introduce PrT nets adapted from [28] [31].

4.1 PrT Nets for Test Modeling

Suppose constants start with an upper-case letter or a
digit, and variables start with a lower-case letter. A term
is a constant, a variable, or an expression f(t1,...,tn) of n
arguments, where f is a function symbol and each ti is a
term. A term is called a ground term if it has no free vari-
able. A label is a tuple of terms. Let ∑l be a set of labels
and ∑f be a set of first-order logic formulas.

Definition 2 (PrT net) A PrT net N is a tuple <P, T, F, I, L, ,
M0>, where:
(1) P is a finite set of places (also called predicates),
(2) T is a finite set of transitions,
(3) F is a finite set of normal arcs from places to transi-

tions and from transitions to places, i.e., F	⊆ P× � ∪
T× �,

(4) I is a finite set of inhibitor arcs from places to transi-
tions (i.e., I	⊆ P× �),

(5) L: FI ∑l is a labeling function on arcs FI. L(f) is
the label for arc f FI. When the label of an arc is
not specified, the default label is a no-argument tuple
< >,

(6) : T ∑f is a guard function on T. The guard condi-
tion of transition t, (t), is a first-order logical formu-
la, which can evaluate true or false,

(7) M0 is a set of one or more initial markings.

The PrT nets in this paper are a lightweight version of

the original PrT nets [4] in that (a) arcs are labeled by tu-
ples of terms, rather than formal sums c1l1+c2l2+..+cnln (i.e.,
coefficient ci of tuple li is 1 for all 1in) and (b) tokens are
tuples of ground terms rather than a formal sum. This
simplification has resulted in efficient verification tech-
niques [31]. We have successfully applied the above
lightweight PrT nets to the modeling and analysis of var-

TABLE 1
RBAC RULES FOR THE BORROWER/STUDENT ROLE

No. Object Activity Context Auth_Type

1 Book GiveBackBook day(HD) Prohibition

2 Book BorrowBook day(HD) Prohibition

3 Book BorrowBook day(WD) Permission

4 Book GiveBackBook day(WD) Permission

5 Book ReserveBook day(HD) Prohibition

6 Book ReserveBook day(WD) Permission

7 Book BorrowBook day(MD) Undefined

8 Book ReserveBook day(MD) Undefined

9 Book GiveBackBook day(MD) Undefined

10 Book FixBook day(d) Undefined

AUTHOR XU ET AL.: TITLE 5

ious systems [28] [30] [31]. Also different from the Petri
nets in the literature, we allow multiple initial states to be
associated with the same net structure to represent differ-
ent sets of test data. This makes it convenient to partition
a large test data set into smaller ones so as to improve the
effectiveness of test generation. Suppose m0 M0 is an
initial marking. m0={m0 (p): pP}, where m0 (p) is the set
of tokens residing in place p. A token in p is a tuple of
ground terms<X1, …, Xn>, denoted as p(X1, …, Xn). The
zero-argument token is denoted as <>. For token <> in p,
we simply denote it as p. We also associate a transition
with a list of variables as formal parameters, if any.

Fig. 1 shows a sample PrT net, where available, day, and
borrowed are places (circles); BorrowBook and GiveBackBook
are transitions (solid rectangles). The guard condition of
BorrowBook is d=WD. An arrow (e.g., from available to Bor-
rowBook) represents a normal arc. A bi-directional arc (arc
without arrow) between n1 and n2 (e.g., day and Borrow-
Book) represents two directed arcs: one from n1 to n2 and
the other from n2 to n1. MISTA also supports hierarchical
PrT nets, where a transition can be corresponding to an-
other PrT net (called subnet). To interpret a hierarchy of
PrT nets, MISTA flattens the hierarchy into a single net by
replacing each transition with the corresponding subnet.

Let p and t be a place and transition, respectively. p is
called an input (or output) place of t if there is a normal
arc from p to t (or from t to p). p is called an inhibitor
place if there is an inhibitor arc between p and t. Let t
={pP: (p,t) F}, t ={pP: (t, p) F} and *t ={pP: (p,t) I}
be the input places, the output places, and the inhibitor
places of transition t, respectively. Let x/V be a variable
binding, meaning that variable x is bound to a ground
term V. A variable substitution is a set of variable bind-
ings. For example, {b/B1, d/WD} is a substitution where b
and d are bound to B1 and WD, respectively. Let be a
variable substitution and l be an arc label. l/ denotes the
token (tuple) obtained by substituting each variable in l
for its bound value in . For instance, if l = and =
{b/B1, d/WD}, then l/ = <B1>.

Definition 3 (Enabledness) Transition t in a given net is said
to be enabled by substitution under a marking m0 if:
(1) For each input place p of t (i.e., pt), there is a token

that matches l/, where l is the label of the input arc
from p to t,

(2) For each inhibitor place p of t (i.e., p*t), there is no
token that matches l/, where l is the label of the in-
hibitor arc between p and t, and

(3) The guard (t) evaluates true with respect to .
Suppose {available(B1), day(WD), day(MD)} is an initial

marking for the net in Figure 1. BorrowBook is enabled by

 ={b/B1, d/WD} because token <B1> in the input place
book matches /, token <WD> in the input place day
matches <d>/ , and the guard d=WD is true according to
. A marking mi is said to be a deadlock or termination
state if no transition is enabled under mi.

Definition 4 (Transition Firing). Firing transition t enabled
by substitution under marking mi removes the matching
token from each input place and adds a new token to each
output place. This leads to new marking mi+1. Formally,
mi+1 is defined as follows:
(1) For each input place p of t, mi+1 (p) = mi (p) \{l/},

where l is the label of the arc from p to t and l/ is the
matching token in p,

(2) For each output place p of t, mi+1(p) = mi (p) ∪	 {l/},
where l is the label of the arc from p to t, and l/ is the
new token added to p.

In Definition 4, if p is both input and output place of t
with the same arc label or the arc between p and t is bidi-
rectional, the matching token remains in p. If the new
marking is not a deadlock or termination state, an ena-
bled transition can be fired according to Definition 5.
Thus we can have sequences of transition firings. We de-
note a firing sequence as m0 [t11> m1… mi [ti+1i+1> mi+1…
[tnn> mn, where ti(1in) is a transition, i(1in) is the
substitution for firing ti, and mi (1in) is the marking
after ti fires, respectively. A marking mn is said to be
reachable from m0 if there is such a firing sequence that
transforms m0 to mn.

The above operational semantics of PrT nets provides a
formal basis for the generation of tests when PrT nets rep-
resent test models (Section 5). The PrT nets in this paper
also have declarative semantics - each transition is a first-
order logic formula and each transition firing is an appli-
cation of logical inference. Given a PrT net, each input
(output) place p, together with the associated arc label
<x1, …xn>,is corresponding to an input (output) predicate
p(x1, …xn); each inhibitor place p, together with the asso-
ciated arc label <x1, …xn>,is corresponding to a negative
predicate p(x1, …xn) (called inhibitor predicate). Each
transition can be captured by logic formula PQ, where
precondition P is the conjunction of the inhibitor predi-
cates, input predicates, and guard condition, and post-
condition Q is the conjunction of the output predicates
and negation of each input predicate. P and Q are univer-
sally quantified. For BorrowBook in Fig. 1, P= available (b)
day(d) d=WD and Q=available(b) borrowed(b)day(d).
This lays the theoretical foundation for transforming de-
clarative rules and contracts (preconditions and postcon-
ditions in first-order logic) into a PrT net (Section 4.3).

4.2 Building Role-Permission Test Models from
Functional Test Models

RBAC rules are security constraints on system func-
tions. If a functional test model is already available, we
can integrate in it RBAC rules as constraints for the pur-
poses of access control testing. Our previous work has
demonstrated that PrT nets can be used to build test
models for automated functional testing of various appli-
cations [26]. One approach to building a functional test
model as a PrT net (referred to as functional net) is to

Fig. 1. A sample PrT net.

6 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

formulate a test design (or workflow) by using the build-
ing blocks of PrT nets, including sequence, condition,
repetition, concurrency, and modularity/hierarchy. This
is similar to programming, which transforms a program
design into code by using the building blocks (sequence,
if-then-else, for/while/repeat, multi-threading, clas-
ses/function calls) of the given programming language.
More details on the methodology for building functional
test models with PrT nets can be found in [27].

Let us consider building a functional net for a subset of
the student role activities in LMS – borrow, reserve, and
return book. A student may borrow an available book
and return a borrowed book. This consists of a sequence
of two activities. A student may reserve a book and then
borrow it. This is also a sequence of activities. When a
borrowed book is returned, it can be borrowed again –
this implies a loop structure. When interested in a book, a
student may borrow or reserve the book – this is a condi-
tion structure. Putting the above structures together
would result in the functional net shown in Fig. 2.

Now we discuss how to build a role-permission test
model by integrating RBAC rules into a functional net.
For the sake of simplicity, let us first assume that a func-
tional net involves the activities of a single role. An RBAC
rule <r, o, a, c, > is related to a functional net only if activ-
ity a appears as a transition in the functional net. For ex-
ample, rules 1-9 in Table 1 for the activities BorrowBook,
GiveBackBook, and ReserveBook are related to the functional
net in Fig. 2. Suppose the RBAC rules in (r) related to a
functional net are <r, o1, a1, c1, 1>,<r, o2, a2, c2, 2>, …, <r,
om, am, cm, m>. We integrate each RBAC rule <r, oi, ai, ci, i>
(1≤i≤m) into the functional net as follows:

 If i=Permission and ci=true. Nothing is needed in
that the rule is already represented by the activity
transition ai,

 If i=Permission and predicates in ci have corre-
sponding places in the net (new places may be
created for the predicates if necessary). Add a bi-
directional arc between each place and the activity
transition ai (because the access does not change
the context) and add ci to the guard of ai. Consider
rule 3 in Table 1 – student is allowed to borrow
book only on a working day. The context day(d)
d=WD becomes an additional constraint of Bor-
rowBook in the functional net. As shown in Fig. 3,
we create a place day, add a bidirectional arc be-
tween place day and transition BorrowBook, label
the arc with variable d, and add d=WD to the
guard condition of BorrowBook.

 If i=Prohibition, we add to the net a new transition
Pai, which means ai is prohibited. This transition
shares the input and inhibitor places (i.e., func-
tional preconditions) with ai. If the predicates in ci
are corresponding to places, we add a bi-
directional arc between each place and transition
Pai (because it does not change the context) and
add ci to the guard of ai. Consider rule 2 in Table 1
– student is not allowed to borrow books on holi-
day. This is represented by transition PBorrowBook
in Fig. 3.

 If i=Undefined, we handle the same way as Prohi-
bition except that the new transition is named Pai.
Consider rule 7 in Table 1 – borrowing books on a
maintenance day is undefined. This is represented
by transition UBorrowBook in Fig. 3.

The role-permission test model in Fig. 3 results from

integrating rules 2, 3, and 7 in Table 1 into the functional
net in Fig. 2. Other rules can be handled similarly except
for rule 10 whose activity Fixbook does not appear in the
functional net in Fig. 2. Since Fixbook is an activity of the
secretary role, we can integrate rule 10 into the functional
net of secretary. To represent multiple roles in a model, we
use a global place role, which is connected to each transi-
tion with a bi-directional arc labeled by a role variable
<r>. Which role can or cannot perform an activity is then
represented by such a guard condition as r=R or r!=R,
where R is a particular role. For example, rule 10 can be
integrated into the secretary test model by using a new
transition UFixBook, whose guard includes r=student. This
transition means that fixbook is undefined for student.

4.3 Building Role-Permission Test Models from
Contracts

When a functional net is not available, we can construct
role-permission test models from contracts (preconditions
and postconditions). We have developed this method for
two considerations. First, design by contract [16] is a
widely accepted approach to functional specification.
Second, RBAC rules as security constraints on system
functionality cannot be tested without involving system
functionality. Access control testing requires understand-
ing of the preconditions and postconditions of the related
activities. Consider testing the RBAC rule that a student is
allowed to borrow books on working days. The test can-
not be performed unless the functional precondition “book
is available” is satisfied. The accurate test oracle cannot be

Fig. 2. Partial functional net of student activities in LMS

Fig. 3. Partial role-permission model of student activities in LMS.

AUTHOR XU ET AL.: TITLE 7

determined without knowing its postcondition.
Contracts in the form of precondition postcondition

capture the dependencies among activities. Suppose avail-
able(b) means book x is available and borrowed(b) means
book b is borrowed. The contract of GiveBackBook(b) is for
any b, borrowed(b) available(b). An activity can be associ-
ated with multiple contracts, representing different situa-
tions. A general precondition in the disjunctive form
P1…Pn can be represented by multiple contracts
P1Q1,…, PnQn. For example, the contract of Borrow-
Book(b) is for any b, available(b) borrowed(b) availa-
ble(b) or for any b, reserved(b) borrowed(b) reserved(b),
where reserved(b) means book b is reserved. In this paper,
the preconditions and postconditions are not necessarily
accurate specifications of activity’s semantics. Instead,
they focus specifications of test requirements. For exam-
ple, they may represent the ordering constraints on the
activities involved in the rules.

The process for building permission test models by in-
tegrating RBAC rules (r) with the contracts of related
activities is as follows. First, we partition (r) into a
number of subsets in terms of roles or relevant activities.
In LMS, student and teacher are independent roles alt-
hough they have similar activities. So we group the RBAC
rules for student and teacher into different subsets. Sec-
ond, each subset of the RBAC rules together with the con-
tracts of the relevant activities is integrated into a PrT net.
This is done by converting each rule and the contract of
the corresponding activity into a PrT net and composing
the PrT nets of all rules into a single PrT net.

Suppose the RBAC rules with respect to activity aA
are <r, o, a, c1, 1>,<r, o, a, c2, 2>, …, <r, o, a, cm, m> and
p1(x1)…pn(xn)q1(y1)…qk(yk) p1(x1)… pk(xk) is a
contract of activity a. We handle each rule <r, o, a,
ci=r1…ru, i> (1≤i≤m) as follows:

 If i=Permission, we first convert the contract into a
net with one transition named after activity a.
Generally, predicates p1(x1),… ,pn(xn) in the pre-
condition are corresponding to the input places of
the transition if they are not built-in functions such
as arithmetic and relational operations (e.g., z=x+y
and x>y). Built-in predicates are transformed into
part of the transition’s guard condition. Predicates
q1(y1),…,qk(yk) in the postcondition are correspond-
ing to the output places of the transition. The in-
put/output arcs are labeled by the arguments of
the corresponding predicates. The input arc for pj
is bi-directional if its negation pj does not appear

in the postcondition. As the context in an RBAC
rule is an additional precondition of the activity in
the rule, the predicates r1,…,ru in the context lead
to additional input places for the transition. The
arc labels depend on the corresponding argu-
ments. If ri(zi) does not have negation and zi is a
variable, then the arc label is <zi>. If ri(Zi) does not
have negation and Zi is a constant, then the arc la-
bel is <zi>, and zi=Zi is added to the guard condi-
tion of the transition. If ri(Zi) is a negative predi-
cate and Zi is a constant, then the arc label is <zi>,
and zi≠Zi is added to the guard condition of the
transition. The arcs are bi-directional unless the ac-
tivity negates the context. Fig. 4(A) shows the net,
where the arc between p1 and a is directed because
p1(x1) is negated in the postcondition; the arc be-
tween pn and a is bi-directional as pn(xn) does not
appear in the postcondition.

 If i= Prohibition, we convert the precondition of
the contract into a net with one transition named
Pa (“P” denotes “prohibition”). The postcondition
of the contract is not used because the activity is
prohibited. The predicates in the precondition are
corresponding to input places and the arcs are la-
beled by the corresponding arguments. The arcs
are all bidirectional because, when the prohibited
activity is attempted under the specified context, it
should not change the system’s state. The context
is handled in the same way as i=Prohibition. Fig.
4(B) shows the net.

 If i= Undefined, the transformation is similar to
that for i= Prohibition. However, the transition is
named by Ua (“U” denotes “Undefined”).

The PrT nets for multiple rules and contracts are com-
posed into one net through place fusion - places with the
same name in different nets become one place in the
composed net. Transitions with the same name in differ-
ent nets become different transitions in the composed net
(each of them is assigned a unique internal identity). The
composed net can further be integrated with the nets
from other RBAC rules and contracts.

Fig. 5 shows the PrT net that covers all the rules in Ta-
ble 1 (except for transition UDeliverbook, which resulted
from an additional rule). For clarity, an annotation is used
to specify day as a global predicate, meaning that there is
a bidirectional arc between day and each transition.

According to the semantics of the PrT nets, the above

(A) Permission net (B) prohibition net

Fig. 4. PrT nets for permission and prohibition rules.

Fig. 5. RBAC test model for the student role.

8 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

transformations have preserved the semantics of contracts
and RBAC rules. For the sake of simplicity, the above dis-
cussion focuses on the rules for individual roles. It is easy
to deal with multiple roles. We enhance the net with a
new place, named role, new arcs from place role to each
transition labeled with <r>, and additional guard condi-
tion for each transition (e.g., r=Student). In essence, we
use role(r) as an additional precondition for each activity.
In the ASMS case study (Section 7), for example, the com-
plete auction process involves various activities (e.g., cre-
ation of a sale, change of the state of a sale for auction,
comments and bids by buyers) performed by different
roles (e.g., seller, admin, and buyer). We build the test
models based on the auction process (objects and activi-
ties), rather than individual roles. In brief, the transfor-
mation of RBAC rules into a PrT net essentially depends
on the given subset of rules and the contracts of involved
activities. If the given rules involve multiple roles, then
the resultant net captures the behaviors of these roles.

4.4 Discussions on Role-Permission Test Models

After the structure of a PrT net for a role-permission test
model is constructed, we define its initial markings by
specifying test data (e.g., actual arguments of the activi-
ties) and test configurations (e.g., system settings and
contexts in the RBAC rules. Consider the net in Fig. 5. Let
M0={m0}, where m0={available(B1), day (WD), day(HD),
day(MD)}. The net and M0 form a test model for the stu-
dent role. In m0, test data available(B1) can reach the activi-
ties of BorrowBook, ReserveBook and GivebackBook.
day(WD), day(HD), and day(MD) represent all possible
contexts in the rules so that the test model can cover all
the contexts.

Sections 4.2 and 4.3 present two different methods for
constructing role-permission test models from functional
nets and contracts, respectively. The two methods do not
conflict with each other. According to the declarative se-
mantics of PrT nets, a contract can be converted into a PrT
net. Consider the contract p1(x1)… pn(xn) q1(y1)…
qk(yk) p1(x1)….in Section 4.3. Its corresponding net is
similar to the net in Fig. 4(A), except for the places r1,…,ru
introduced for the RBAC rules. Similarly, the correspond-
ing PrT nets for individual contracts can be composed
into a single PrT net. Let M1(N,) denote the test model
obtained from functional net N and RBAC rules in Sec-
tion 4.2 and M2(C,) denote the test model obtained
from a set of contracts C and RBAC rules in Section 4.3.
It is not difficult to prove that M1(N,)= M2(C,) if N is
the corresponding PrT net of C.

Consider the contracts of BorrowBook, ReserveBook, and
GiveBackBook in Table 2. The composed PrT net for these
contracts is the same as the net in Fig. 2. In other words,
applying the method in Section 4.3 to the contracts in Ta-

ble 2 and RBAC rules 2, 3, and 7 in Table 1 would result
in the RBAC test model in Fig. 3, which was obtained by
integrating the net in Fig. 2 with the same RBAC rules.
Nevertheless, both methods are useful. They represent
different modeling paradigms and build test models from
different functional perspectives. Generally, functional
nets are procedural whereas contracts are declarative. The
former can be used to capture test workflows and the lat-
ter can specify logical dependencies between activities.

4.5 Building User-Role Assignment Test Models

A test model of user-role assignments specifies the test
requirements related to assigning/deassigning users to
roles, and activating/deactivating roles assigned to users.
The assignment and activation must satisfy the static and
dynamic constraints on separation of duties, i.e., SSOD
and DSOD. As shown in Fig. 6, PrT nets can be used to
formalize the above test requirements. In Fig. 6, places
user and role represent users and roles, respectively. Plac-
es assignedRole and activatedRole represent the roles that
are assigned to users and the roles that are activated, re-
spectively. Places ssod and dsod represent the role pairs in
SSOD and DSOD, respectively. Two “assign” transitions
intend to assign roles to users. The lower “assign” transi-
tion assigns role r2 to user u if u is not yet assigned to any
role. The upper “assign” transition assigns role r2 to user u
which already plays role r1 only when <r1, r2> SSOD
(i.e., the inhibitor arc from ssod to assign) and r1 r2 (i.e.,
the guard condition). Similarly, the lower “activate” tran-
sition activates role r2 assigned to user u when u has no
activated role yet. The upper "activate” transition activates
role r2 assigned to user u when u has an activated role r1,
r1 r2, and <r1, r2> DSOD. In addition, transitions de-
assign and deactivate remove role assignment and activa-
tion relations, respectively.

4.6 Analyzing Test Models

Ensuring correctness of a test model is critical to model-
based testing. Here we brief introduce our techniques for
analyzing access control test models, including verifica-
tion of transition/state reachability, verification of dead-
lock states, verification of assertions, and simulation.

Verification of transition reachability is to check if all
transitions of a given PrT net are reachable from some
given initial state. In an access control test model, each
transition is corresponding to an access control activity.
Thus, all transitions should be reachable from some given

TABLE 2
SAMPLE CONTRACTS IN LMS

Activity Contracts (Precondition Postcondition)
BorrowBook available(b) borrowed(b) available(b)

reserved(b) borrowed(b) reserved(b)
ReserveBook available(b) reserved(b) available(b)
GiveBackBook borrowed(b) available(b) borrowed(b)

Fig. 6. A test model for user-role assignments.

AUTHOR XU ET AL.: TITLE 9

initial state. If there is one transition that is unreachable
from the given initial states, then the transition will not be
covered by any tests to be generated from the specified
test model. In this case, either the net or the set of initial
states is specified incorrectly. Suppose M0={m1}, where
m1= {available(B1), day(WD), day(MD)}. UBorrowBook is not
reachable from m1 in the net in Fig. 5. In this case, M0 is
not specified properly.

Verification of goal reachability is to check if a given goal
state is reachable from some initial state of the given PrT
net. If a goal state is known to be reachable (or unreacha-
ble), but the verification reports that it is unreachable (or
reachable), then the net or the set of initial states is speci-
fied incorrectly. In Fig. 5, for example, {reserved(B1)} is a
state reachable from m0={available(B1), day(WD), day(MD),
day(HD)}. It can be reached by transition firings Reserve-
Book(b/B1, d/WD). However, if the arc from transition Re-
serveBook to place reserved is missing, the reachability veri-
fication would report that the above state is not reachable.
A goal state is not limited to a specific marking. General-
ly, it is specified by a logical formula P Q. The reacha-
bility analysis of P Q checks to see if there exists a
reachable marking that satisfies P Q. For example, “to-
kenCount(reserved, x) x>0” refers to states where the
place reserved has at least one token. This is expected to
be reachable from the initial state {available(B1), day(WD),
day(MD)} in the net in Fig. 5.

Verification of deadlock states is to check if the given PrT
net can reach any deadlock state under which no transi-
tion is firable. If the verification result is different from
our expectation, then the given net is specified incorrect-
ly. For example, the net in Fig. 5 with the initial state
{available(B1), day(WD), day(MD)} does not reach any
deadlock states.

Verification of assertion P Q is to check if the given
assertion is satisfied by all states reachable from the given
initial states. Consider the net in Fig. 5 with the initial
state {available(B1), day(WD), day(MD)}. Place reserved
should never have more than one token. This requirement
can be represented by an assertion “tokenCount (reserved,
x) x<2”. Generally, verification of goal reachability aims
at the analysis of existential properties (“there exists”)
whereas verification of assertions targets the analysis of
universal properties (“for all”).

MISTA also offers a visual simulator for stepwise exe-
cution of test models. At each state, the simulator shows
the number of tokens in each place and highlights the
enabled transitions. The user can choose to manually fire
one enabled transition at a time or let MISTA continuous-
ly fire randomly selected enabled transitions. This is use-
ful for finding out unexpected behaviors in a test model.

5 GENERATING RBAC TESTS

This section describes how to generate model-level access
control tests from RBAC test models.

Definition 5 (Model-level RBAC test). Given an RBAC test
model represented by a PrT net, a test case is a firing se-
quence m0 [t11> m1,…, [tnn> mn in the PrT net, where
(1) m0 is the initial setting of the test,

(2) Transition firings t11,…,tnn are test inputs, i.e., calls
to the activities in RBAC rules or related to role as-
signment (assignment, de-assignment, activation, and
de-activation). Suppose transition ti is corresponding
to activity a(x1,…,xm) and substitution i={x1/u1, …,
xm/um}. Then tii (1in) represents method call
a(u1,…,um), where uj (1jm) is xj’ actual argument,

(3) m0,…,mn are oracle values for respective test inputs tii

(1in). For each place pP and each token
<v1,…,vm> Mk

0(p), proposition p(v1,…,vm), when
used as an oracle value, is expected to evaluate to
true in the SUT.

For example, suppose M0={m0}, m0={available(B1), day
(WD), day(HD), day(MD)} for the model in Fig. 5. <m0,
Reserve(b/B1,d/WD), m1, Borrow (b/B1,d/WD), m2, UGive-
BackBook(b/B1, d/HD), m3> is a firing sequence, where:

m1={reserved(B1), day(WD), day(HD), day(MD)},
m2={borrowed(B1), day(WD), day(HD), day(MD)}
m3={borrowed(B1), day(WD), day(HD), day(MD)}

The firing sequence is a test case that exercises three
RBAC rules: reserve books on working days (permitted),
borrow books on working days (permitted), and give
back books on holidays (prohibited). The states of book
B1, reserved(B1), borrowed(B1), and borrowed(B1), represent
the expected results of these activities. We assume that a
prohibited activity, such as PGiveBackBook(b/B1, day/HD),
should not change the system state. Here day(WD),
day(HD), day(MD) are not used as test oracles because
they represent system settings for access control contexts.

Therefore, test generation from an RBAC test model in
our approach is to produce firing sequences (test cases)
from the RBAC test model according to a certain strategy
(e.g., to achieve a coverage criterion). The test cases are
structured as a test tree, where each path from an initial
marking to a leaf is corresponding to a firing sequence
(i.e., test case). Fig. 7 shows portion of the test tree gener-
ated for the reachability coverage of the test model in Fig.
5. Node “1 new” represents the initial marking, i.e., the
initial setting of each test. The path 11.11.1.2 exercises
two RBAC rules. It first borrows book B1 on a working
day, which should be permitted, and attempts to return
the book on a holiday, which should be prohibited. In
order to represent tests generated from multiple initial
markings (i.e., different sets of test data and system set-
tings), the test tree uses an invisible root node whose
child nodes are corresponding to the initial markings.

MISTA supports automated test generation for several
coverage criteria, such as reachability coverage, state cov-

Fig. 7 Portion of a test tree.

10 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

erage, and transition coverage. In a role permission test
model, a transition is corresponding to one RBAC rule. In
a role assignment test model, a transition is correspond-
ing to role assignment, de-assignment, activation, or de-
activation. A test suite is said to meet transition coverage
if each transition is covered by at least one test. A test
suite is said to meet state coverage if each state is covered
by at least one test. A test suite is said to meet reachability
coverage if each edge in the reachability graph (i.e., each
transition firing under each reachable marking) is covered
by at least one test. Reachability coverage subsumes tran-
sition coverage and state coverage because the reachabil-
ity coverage includes each reachable transition and each
reachable state. The case studies in this paper use the test
generator for reachability coverage as described in Algo-
rithm 1. It extends the previous implementation [26] with
two techniques: partial ordering of concurrent firings and
pairwise combinations of transition inputs. This extension
can reduce the number of test sequences so as to deal
with more complex test models.

After initialization (line 1), Algorithm 1 creates a node
for each initial marking and adds the node to the queue
for expansion (lines 2-5). While the queue is not empty
(line 6), it takes a node from the queue for expansion
(lines 7-41). To expand a node, the algorithm first com-
putes and collects eligible firings for all transitions (lines
8-29) and then creates a new child node for each of the
eligible firings (lines 30-40). If the resultant marking of a
firing has not appeared before, the new node for the firing
is also added to the queue for further expansion (lines 37-
39). In Algorithm 1, currentNode.marking refers to the
marking in currentNode. allSubstitutions(t, currentNode.
marking) denotes all substitutions that enable t under cur-
rentNode.marking (line 13). According to the definition of
transition enabledness (Definition 3), Substitutions for a
transition are obtained by unifying the arc label of each
input or inhibitor place with the tokens in this place and
evaluating the guard condition. The collection of all sub-
stitutions is computed through backtracking - after a sub-
stitution is obtained, backtracking is applied to the unifi-
cation process until all substitutions are found. In this
case, all possible combinations of tokens in the input
places are covered. Different from allSubstitutions(t, cur-
rentNode. marking), pairwiseSubstitutions(t, currentNode.
marking) (line 11) denotes all pairwise substitutions that
enable t under currentNode.marking. Pairwise substitutions
are substitutions where pairwise combinations of tokens
in the input places are applied. Suppose there are 10 input
places and each of them has 10 values (single argument
tokens). There are 1010 combinations of these values. Us-
ing pairwise combination, however, 120 combinations can
cover all pairs of the values. Algorithm 1 also offers an
option of using partial ordering of concurrent firings
(lines 16-29). The total ordering of n (n>1) concurrent fir-
ings yield n! sequences, where the partial ordering only
produces one sequence. For a group of concurrent firings,
only one of them is selected to create new node for expan-
sion (lines 20-27). Because the selected firing does not
disable other concurrent firings in the group, its concur-
rent firings will remain enabled at the resultant marking

and thus will be expanded only in the next levels.
Algorithm 1: Test generation for reachability coverage

Input: PrT net (P, T, F, I, L, , M0).

Output: transition tree with dirty tests.

Declare: root, newNode, currentNode are nodes;

 queue is a queue of nodes;

 firings is a list of firings;

 newMarking is a marking;

1. initialization: queue ; root create a node

2. for each initial marking m0M0, do

3. create the initial state node as a child of the root

4. add the node into queue

5. end for

6. while queue do

7. currentNode first node in queue;

8. firings ；

9. for each transition t T, do

10. if use pairwise combination

11. firings firings ∪ {(t,): pairwiseSubstitutions(t,

currentNode.marking)};

12. else

13. firings firings ∪{(t,): allSubstitutions(t, cur-

rentNode.marking)};

14. end if

15. end for

16. if use partial ordering

17. tmpFirings firings;

18. firings ;

19. while tmpFirings do

20. f first firing in tmpFirings;

21. firings firings ∪ {f};

22. remove f from tmpFirings;

23. for each f’ tmpFirings do

24. if f and f’ are concurrent

25. remove f’ from tmpFirings;

26. end if

27. end for

28. end while

29. end if

30. for each (t,) firings, do

31. newMarking the marking of firing t with

32. newNode.parent currentNode;

33. newNode.markingnewMarking;

34. newNode.transition t;

35. newNode.substitution ;

36. add newNode to currentNode.children;

37. if newMarking has not occurred in the tree

38. add newNode to queue;

39. end if

40. end for

41. end while

42. return root

In addition, Algorithm 1 allows partitioning of test da-

ta due to the support of multiple initial states. We can
divide a large set of test data into multiple initial states.
Consider a transition with three input variables and each
of them has 10 values. If all of the input values are speci-
fied in one initial state, the transition can be fired by 1,000
different combinations of the inputs. If the input values

AUTHOR XU ET AL.: TITLE 11

are specified into two initial states and each initial state
contain 5 values of each input variable, then the possible
firings of the transition are 250 (5*5*5*2).

The complexity of Algorithm 1 is exponential to the
size of the test model because it covers all the states and
state transitions of the test model. The test tree can be
very large although pairwise combination, parting order-
ing, and partitioning of test data can significantly reduce
the number of tests.

6 GENERATING EXECUTABLE TEST CODE

In the previous discussions, the RBAC test models can be
independent of the system implementation. Thus, tests
generated from an RBAC test model are not immediately
executable with the SUT. For example, the RBAC test
model of the student role does not specify how BorrowBook
can be performed against the SUT. Our approach allows a
MIM specification to be created for converting all model-
level tests into executable code automatically. Although
our approach supports the generation of test code in a
variety of programming and scripting languages, this
paper focuses on Java/JUnit (JUnit is a test framework for
writing and executing Java test code).

Definition 6 (MIM). A MIM specification for a PrT net is a
7-tuple <ID, fo, fc, fa, fm, ls, h>, where:
(1) ID is the identity of the SUT tested against the PrT

net,
(2) fo is the object function that maps constants in the PrT

net to objects in the SUT. Given an constant X in the
PrT net, fo(X) is an object in the SUT,

(3) fc is the method mapping function that maps transi-
tions in the PrT net to methods (operations) in the
SUT,

(4) fa is the accessor function that maps places (predi-
cates) in the PrT net to accessors in the SUT,

(5) fm is the mutator function that maps places (predi-
cates) in the PrT net to mutators in the SUT,

(6) ls is the list of predicates in the PrT net that are im-
plemented as system settings in the SUT. These pred-
icates are called setting predicates,

(7) h is the helper code function that defines user-
provided code to be included in the test code.

Table 3 presents portion of a MIM in LMS. Object func-
tion fo maps objects in the RBAC test model to objects in
the SUT. In LMS, for example, book B1 in the test model
of the student role is corresponding to Book1Title, which a
named constant referring to a book titled “Software Secu-
rity”. Method function fc maps activities in the test model
to test operations in the SUT. For example, the implemen-
tation of BorrowBook is a method doPermittedBorrow. The
methods for testing individual activities depend on how
the SUT is implemented, e.g., what types of security ex-
ceptions will be reported. In our case studies, the excep-
tions for prohibited activities and undefined activities are
SecuritPolicyViolationException and UndefinedSecuritPolicy-
Exception, respectively. Thus, a test for a permitted activi-
ty fails if the SUT throws an exception of SecuritPolicyVio-
lationException or UndefinedSecuritPolicyException. A test
for a prohibited activity fails if no exception is thrown or

the thrown exception is not SecuritPolicyViolationExcep-
tion. A test for an undefined activity fails if no exception
is thrown or the thrown exception is not UndefinedSecu-
ritPolicyException.

Accessor function fa maps predicates in the test model
to accessors in the SUT. It is used for verifying oracle val-
ues. For example, book b is borrowed on day d in a test
case, i.e., borrowed(b, d), can be verified by method isBook-
Borrowed(b). Mutator function fm maps the system setting
predicates in ls to operations in SUT so that the SUT can
be configured to a specific testing state. For example,
predicate day in LMS is a system setting. As an access con-
trol precondition, it must be set correctly before the indi-
vidual activities can be called. Setting LMS to a working
day, i.e., making day(WD) true, can be done by the follow-
ing statement: ContextManager.currentContext = Context-
Manager.workingday; Helper code function fh includes
header code (e.g., package and import statements in Java),
constant and variable declarations, setup, teardown, and
methods for testing individual activities. All of this code
will be included in the test code.

 h(package): package statement.
 h(import): import statements.
 h(setup): Junit setup code.
 h(teardown): Junit teardown code.
 h(local): named constants, variables, and methods

to be put in the generated test code. These defini-
tions can be used by fo, fc, fa and fm.

To generate test code from a test tree produced by a

TABLE 3
PORTION OF THE MIM SPECIFICATION FOR THE RBAC TEST

MODEL OF STUDENT IN LMS

MIM Model
element

Implementation
element

Notes

fo B1 Book1Title Book1Title is a named constant in
the helper code (see below)

fc Reserve-
Book(b, d)

doPermit-
tedReserve(b)

doPermittedReserve is a test
method in the helper code. It fails if
an exception (particularly security-
related exception) is thrown.

Borrow-
Book(b,d)

doPermittedBor-
row(b)

doPermittedBorrow is a test method
in the helper code. It fails if an
exception (particularly security-
related exception) is thrown.

PGiveBack-
Book(b, d)

 doProhibitedGive-
Back (b)

doProhibitedGiveBack is a test
method in the helper code. It fails if
an exception (particularly security-
related exception) is thrown.

fo bor-
rowed(b,d)

isBookBorrowed(b) isBookBorrowed is a query method
for verifying whether the status of
the book is borrowed.

reserved(b,d) isBookReserved(b) isBookReserved is a query method
for verifying whether the status of
the book is reserved

fm day(WD) ContextManag-
er.currentContext =
ContextManag-
er.workingday;

It sets the concurrent context to
working day.

day(HD) ContextManag-
er.currentContext =
ContextManag-
er.holiday;

It sets the concurrent context to
holiday day.

ls day The access control context day is a
system setting

fh(PA
CKA
GE)

package
com.library.test.software.modeltest;

Helper code for the package state-
ment of Java test code

fh(CO
DE)

private final String Book1Title =
"Software security";
…

Declarations and methods to be
included in the test code

12 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

test generator (e.g., Algorithm 1), we create a JUnit test
class (i.e., test suite) for the sub-tree of each initial state.
Such a JUnit test class consists of test methods - each test
method is corresponding to a firing sequence (test case) in
the sub-tree. Algorithm 2 below describes how JUnit test
classes are generated for a given test tree. For each JUnit
test class, it first imports user-provided package and im-
port statements (line2), create the signature of the test
class (line 3), declares an instance variable whose type is
the given class ID (lines 4-6), and imports user-defined
local code (line 5), setup code (lines 6-7), and teardown
code (line 14). If the setup code is not provided in h, we
generate a setup method for the initial state (lines 9-13).
Each token p(a1, …, ak) in the initial state is converted into
Java code for achieving the test configuration (lines 10-
12). To do so, we first transform model-level objects ai to
implementation-level objects fo(ai) and then call the muta-
tor function fm (line 14). This is similar for dealing with
system settings in test sequences (lines 20-22). Then Algo-
rithm 2 retrieves all tests for the initial state (lines 15-16)
and generates a test method for each test m0[t11> m1,…,
[tnn> mn (lines 17-29). For each transition firing tii, the
test method configures the system settings for the test
operation (lines 20-22), issues the test operation (line 23),
and verifies the oracle values (lines 24-26). Note that each
model-level object ai or bi is mapped to the implementa-
tion-level object fo(bi) or fo(bi). The test method does not
include explicit calls to setup and teardown because these
calls are executed automatically by JUnit.

Algorithm 2. Generation of test code in Java/JUnit

Input: transition tree root, MIM = <ID, fo, fc, fa, fm, ls, h>.

Output: Java/JUnit test code.

Declare: initialStates is a set of initial markings;

 initState is an initial marking;

 leafNodes is a set of leaf nodes;

 testSequences is a set of test sequences;

 testSequence refers to one test sequence;

1. for each initState initialStates, do

2. create header according to h(package) and h(import);

3. create test class signature according to ID (the class under

test) and the index of initState;

4. declare an instance variable whose type is ID;

5. import h(local) into this test class;

6. if h(setup) is defined

7. import h(setup) to this test class

8. else // generation of setup according to initState

9. create the signature of the setup method;

10. for each pP and token <a1, …, ak> in p, do

11. create fm (p(fo(a1), …, fo(ak))) in the setup body;

12. end for

13. create the closing part of the setup method;

14. import h(teardown) to this test class

15. leafNodes all leaf nodes corresponding to initState;

16. testSequences all tests according to leafNodes;

17. for each m0 [t11>m1,…, [tnn>mn testSequences, do

18. create the signature of the JUnit test method;

19. for (i=1 to n) do

20. for each input place p of ti such that pls and <a1, …,

ak> mi (p), do

21. create system setting code fm(p(fo(a1), …, fo(ak)));

22. end for

23. create component call code, fc(c(fo(b1), …, fo(bk)));

24. for each p(a1, …, ak) such that <a1, …, ak>mi (p) do

25. create assertion fa (p(fo(a1), …, fo(ak)));

26. end for

27. end for

28. create the closing part of the test method;

29. end for

30. end for

Consider the aforementioned sample test in Section 5:
m0, ReserveBook(b/B1, d/WD), m1, BorrowBook(b/B1,

d/WD), m2, PGiveBackBook(b/B1, d/HD), m3
or simply:
m0, ReserveBook(B1, WD), m1, BorrowBook(B1, WD), m2,

PGiveBackBook(B1, HD), m3
The generated JUnit test method is as follows:

1. public void test12() throws exception {

2. ContextManager.currentContext= ContextManag-

er.workingday;

3. doPermittedReserve(Book1Title);

4. assertTrue(isBookReserved(Book1Title));

5. ContextManager.currentContext=ContextManager.workingday;

6. doPermittedBorrow(Book1Title);

7. assertTrue(isBookBorrowed(Book1Title));

8. ContextManager.currentContext = ContextManager.holiday;

9. doProhibitedGiveBack(Book1Title);

10. assertTrue(isBookBorrowed(Book1Title));

11. }

Lines 2-4 are generated for test operation Reserve-

Book(B1, WD) - setting up the testing context (line 2), issu-
ing the test operation (line 3), and verifying the oracle
value (line 4). According to the object mapping in Table 3,
B1 is corresponding to Book1Title. The precondition of
ReserveBook(Book1Title, WD) is day(WD), and day is a sys-
tem setting predicate. Before issuing the test operation,
we have to set the context to a working day – this is done
by calling the mutator function for day(WD), i.e., Con-
textManager.currentContext = ContextManager. workingday;
specified in Table 3 (refer to lines 20-22 of Algorithm 2).
According to the method mapping function, the test op-
eration reserveBook(Book1Title, WD) is implemented by
doPermittedReserve(Book1Title) (refer to line 23 of Algo-
rithm 2). The postcondition of reserveBook(Book1Title, WD)
is reserved(Book1Title, WD). According to the accessor
function for reserved(b,d), reserved(Book1Title, WD) is veri-
fied by isBookBorrowed (Book1Title) in the implementation
(refer to lines 24-26 of Algorithm 2). Similarly, lines 5-7
are generated for BorrowBook(B1, WD), and lines 8-10 are
generated for PGiveBackBook(B1, HD).

7 EMPIRICAL STUDIES

In this section, we describe our case studies for evaluating
the fault detection capabilities of our approach. The case
studies focus on testing of role permission assignments,
rather than user-role assignments. We first introduce how
the experiments were set up and then present the results

AUTHOR XU ET AL.: TITLE 13

of our experiments. Finally, we discuss scalability issue as
well as threats to validity in our studies.

7.1 Experiment Setup

Our case studies are based on three Java programs, LMS
(Library Management System), VMS (Virtual Meeting
System), and ASMS (Auction Sale Management System).
Table 4 presents the main parameters of these programs.

LMS offers services to manage books in a public li-
brary. The books can be borrowed and returned by the
users of the library on working days. LMS distinguishes
three types of users: public users who can borrow 5 books
for 3 weeks, students who can borrow 10 books for 3
weeks and teachers who can borrow 10 books for 2
months. LMS is managed by an administrator who can
create, modify, and remove user accounts. Books in the
library are managed by a secretary who orders books or
adds them when they are delivered. The secretary can
also fix the damaged books in certain days dedicated to
maintenance. When a book is damaged, it must be fixed.
While it is being fixed, this book cannot be borrowed but
a user can reserve it. The director of the library has the
same accesses than the secretary and can consult the ac-
counts of the employees. The administrator and the secre-
tary can consult all user accounts. All users can consult
the list of books in the library.

VMS offers simplified web conference services. It is
used in an advanced software engineering course at Uni-
versity of Rennes 1, in France. The virtual meeting server
allows the organization of work meetings on a distribut-
ed platform. When connected to the server, a user can
enter or exit a meeting, ask to speak, eventually speak, or
plan new meetings. Each meeting has a manager. The
manager is the person who has planned the meeting and
has set its main parameters (such as its name, its agenda,
etc.). Each meeting may also have a moderator, appointed
by the meeting manager. The moderator gives the floor to
a participant who has asked to speak.

ASMS allows users to buy or sell items online. A seller
can start an auction by submitting a description of the
item he wants to sell and a minimum price (with a start
date and an ending date for the auction). Then usual bid-
ding process can apply and people can bid on this auc-
tion. One of the specificities of this system is that a buyer
must have enough money in his account before bidding.

The protocol of our experiment is as follows. First, we
construct and analyze the test models. The test models of
LMS and ASMS are created based on the contracts of re-

lated activities (Section 4.3), whereas the test models of
VMS are constructed based on functional test models
(Section 4.2). Second, we create the MIM specification for
each test model as described in Section 6. Thus complete
MID specifications are obtained for test code generation.
Third, we use MISTA to generate test code from the MID
specifications. Fourth, we execute the generated test code
against the original version such that no test fails (the
original version is considered as the correct version). If
there is a failure, then the previous steps need to be re-
peated. Finally, we run the test code against each of the
mutants of the RBAC rules.

The mutants were created automatically by the MutaX
tool (https://sites.google.com/site/servalteam/tools/
mutax) using five types of mutation operators: replacing
permission rule with prohibition, replacing prohibition
rule with permission, changing role, changing context,
and adding a rule. They were created before this work
was initiated. To evaluate the proposed approach, the
following mutants were excluded: (a) mutants related to
non-implemented activities because the tests could not be
performed, (b) mutants with inconsistent access control
rules. These mutants are typically created by the adding
rule operator, and (c) mutants that have the same behav-
ior as the original version.

Interested reader may contact the corresponding au-
thor to obtain a copy of the source code, mutants, and test
models of the case studies. The implementation of our
approach is included in the current release of MISTA (the
URL for download is given in Section 1), which can re-
produce the test code from the test models used in the
empirical studies.

7.2 Results

The results of our experiments are summarized in Table
5. For LMS, there were 207 test cases in 3,185 lines of
code. 56.2% of the test code was generated. The tests
killed 233 out of 243 mutants, with an overall detection
rate of 95.9%. The 10 remaining mutants not killed by the
tests have the same nature – they contain a new rule cre-
ated by the adding-rule operator but can never cause se-
curity problems because the functional precondition of
the activity in the added rule is not satisfiable. These mu-
tants do not violate the required security policies. Con-
sider a mutant with the following added rule that allows
the admin role to return books on any day: (admin, Book,
GiveBackBook, true, Permission). According to the required
access control policies, none of the Borrower’s activities,
BorrowBook, ReserveBook, and GiveBackBook, is intended for
use by the admin role (no access control rules with respect
to these activities are specified for admin). The above add-
ed rule can never enable the admin role to return books
because the precondition of GiveBackBook- “the book is
borrowed” (by the same person) - is unsatisfiable. This
precondition can only be fulfilled by BorrowBook. In the
mutant, however, Admin is not able to borrow books (Bor-
rowBook is undefined for admin). It is worth pointing out
that our approach killed the mutant with the following
added rule that allows admin to borrow books: (admin,
Book, BorrowBook, true, Permission).

TABLE 4
SUBJECTS OF THE EMPIRICAL STUDIES

Subject LOC #Classes
/Methods

#R #O

#A #Rules

LMS 3,204 62/335 5 4 12 33

ASMS 10,703 122/797 6 6 23 107

VMS 6,077 134/581 9 9 18 106

LOC: lines of source code; #Classes/methods: number of classes and meth-

ods in the Java source code; #R: number of primitive roles tested; #O:

number of objects; #A: number of activities; #Rules: total number of

RBAC rules for primitive roles

14 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

For ASMS, the test models resulted in 501 tests. 81.9%
of the 5,291 lines of test code was generated. The tests
killed all of the 914 mutants. For VMS, the test models
produced 225 tests. 68.1% of the test code was generated.
The tests killed all of the 755 mutants.

The mutation scores in our case studies are almost per-
fect for two main reasons. First, our approach is able to
deal with undefined access control conditions. The tests
generated to cover these situations are not only necessary
but also powerful for revealing potential policy violations
in an implementation. Second, the tests generated for the
reachability coverage can cover all access control rules,
objects, activities, and contexts due to automated test
generation and execution. In comparison, transition cov-
erage has a low fault detection capability. As part of our
initial experiment, the application of transition coverage
to the student role in LMS only killed about 50% of the
mutants because many access contexts were not exer-
cised.

While the subject programs in our case studies have a
reasonable size for the purposes of quantitative evalua-
tion (e.g., ASMS has more than 10,000 LOC), they have a
small number of roles and shallow role hierarchies. In the
literature on RBAC specification and analysis, the number
of roles and depth of role hierarchies are important fac-
tors for measuring the complexity and scalability of
RBAC systems [22] [24]. For a complex real-world RBAC
system with a large number of roles and a deep role hier-
archy, our approach relies on the “divide and conquer”
strategy and builds a number of test models to deal with
subsets of roles and access control rules (rather than a
single model for all roles and rules). Building test models
(e.g., contracts and functional models) is essentially a
manual process. It is also different from system modeling
for design and verification. The former focuses on what
needs to be tested with carefully selected test data,
whereas the latter often deals with system-wide behav-
iors and input spaces. Thus, the complexity and scalabil-
ity of test generation for individual test models in our
approach is not directly related to the total number of
roles and the depth of role hierarchy in the SUT. Instead,
it depends on the number of access control rules, number
of objects, number of activities, number of access contexts,
and test data involved in a given test model. In theory,
the complexity of Algorithm 1 for reachability coverage is
exponential to the sizes of these factors because it aims to

cover every possible state transition. These factors deter-
mine the number of states and state transitions in the
model.

To evaluate the scalability of the implementation of
our approach as a whole, including test generation (Algo-
rithm 1) and code generation (Algorithm 2), we have
conducted a performance testing experiment using a test
model with 8 different initial states. These initial states
account for different complexity levels of the state space.
Table 6 shows the results of our performance evaluation
experiment, where Vi (1≤i≤8) denotes the model with the
i-th initial state. The number of states ranges from 90 to
19,000 (i.e., row A). The most complex case is V8 (the last
column), which has 19,000 states, 79,623 state transitions
in the test tree, 61,091 test cases, 658,309 test activities (i.e.,
transition firings) in all test cases, and 1.3 millions of lines
of test code (the file size is 49.5MB). The Eclipse IDE for
developing Java programs failed to open this test code file
because it is too big. However, it only took less than 5
seconds to generate the test tree (i.e., Algorithm 1) and a
total of about 8 seconds to generate the test code (includ-
ing Algorithm 1 and Algorithm 2) on a MacBook Pro (In-
tel Core i7 2.6 GHz, 8 GB memory). For modified models
with larger state space, MISTA is unable to generate test
code because it runs out of memory. This experiment has
demonstrated that the scalability of the current imple-
mentation is more constrained by space than time. Never-
theless, for all the test models in Table 6 (even for the
simplest V1 with 90 states and 200 state transitions),
manual test generation and management are almost in-
feasible. We believe our work is a major improvement to
the existing manual practices. It is thus of practical utility.

7.3 Threats to Validity

The main result of our study is that our approach is highly
effective in detecting access control defects. The key aspects
that have led to this result include formalization of function
nets and contracts, generation of access control tests with the
reachability graph coverage, generation of executable test
code, and mutation analysis of access control rules. In the
following, we discuss how these aspects can be affected
when our approach is applied to general software applica-
tions where access control is an important security mecha-
nism.

First, in LMS and ASMS, we formalize the contracts of ac-

TABLE 5
RESULTS OF THE EMPIRICAL STUDIES

 #T LOC

GLOC %GL
OC

#M # K Score

LMS 207 3,185 1,789 56.2% 243 233 95.9%

ASMS 501 5,291 4,331 81.9% 914 914 100%

VMS 225 2,538 1,728 68.1% 755 755 100%
Total 933 11,01

4
7,848 71% 1,912 1,902 99.5%

#T: number of test cases generated; LOC: lines of executable JUnit test

code; GLOC: lines of JUnit test code generated by MISTA; %GLOC:

percentage of JUnit test code generated by MISTA; #M: number of access

control mutants; #K: number of mutants killed by the generated test

cases; Score: mutation score = #K/#M.

TABLE 6
RESULTS OF PERFORMANCE EVALUATION

 V1 V2 V3 V4 V5 V6 V7 V8

A 90 300 600 1.3K 4K 7K 10K 19K

B 200 800 1.7K 4.1K 15K 28K 41K 80K
C 100 500 1.1K 2.8K 11K 21K 31K 61K

D 600 3.1K 7.9K 22K 97K 201K 311K 658K
E 1.8K 8K 19K 50K 203K 408K 614K 1.3M
F 0.07 0.22 0.36 0.58 1.18 1.87 2.63 4.65
G 0.13 0.30 0.42 0.94 1.46 2.43 3.64 8.14

A: number of states; B: number of state transitions (i.e., edges) in the test tree;

C: number of test cases (sequences); D: number of test activities (transition

firings) in all test cases; E: lines of test code; F: test generation time in seconds

(Algorithm 1); G: test code generation time in seconds (Algorithm 1 + Algo-

rithm 2). A, B, C, D, and E are rounded to the nearest ten, hundred, or thou-

sand.

AUTHOR XU ET AL.: TITLE 15

tivities involved in the RBAC rules and transform them to-
gether with the RBAC rules into a PrT net. Because precon-
ditions and postconditions are used for test generation, they
do not have to capture the precise semantics of activities. For
example, they may only represent the ordering constraints of
the activities under test. In the case studies, we were able to
complete the formalization and transformation. For a real-
world application, this may not be an easy task. It can de-
pend on the application domain and complexity. In VMS,
however, the role-permission test models are constructed
from the functional test models. This method appears to be
more practical.

Second, the underlying assumption of using the reacha-
bility tree coverage for test generation is that the test model
has a finite number of states. Due to the small sizes of the
subject programs in the case studies, we were able to gener-
ate tests to cover all rules and combinations of objects, re-
sources, and contexts because the test models have a small
number of states. Although RBAC test models are often re-
lated to partial behaviors of a SUT, generation of the above
RBAC tests may not be feasible for complex real-world soft-
ware where access control is involved in large state space.

Third, we were able to generate executable test code by
completing the MIM specifications of the test models in the
case studies. In the MIM specifications, calls to individual
activities and verification of test oracles are programmed.
Policy violations are assumed to be handled consistently - an
exception is thrown when a prohibited or undefined activity
is requested. For real-world software, the individual activity
tests and the test oracles may not be completely program-
mable. If test execution requires human intervention, the
number of tests that can be executed with limited budget
and time would be decreased. This in turn can affect the
effectiveness. Although our approach is applicable to a vari-
ety of languages supported by MISTA, the subject programs
in the case studies were limited to Java applications.

Finally, the evaluation of fault detection capability is
based on the mutation analysis of RBAC rules. The mutants
of RBAC rules were created and have been used in several
studies by the group at University of Luxembourg before the
proposed approach was initiated. The tasks of modeling, test
generation, and test execution for the case studies were ac-
complished independently by the first author’s group at a
different University. This assures the objectivity of mutation-
based evaluation. While we believe the mutants created by
the five types of mutation operators have represented a vast
majority of access control defects, they do not necessarily
cover every possible fault in real-world software.

8 CONCLUSION

We have presented the tool-supported, model-based ap-
proach to automated conformance testing of RBAC policies.
It provides structured processes for building role-permission
test models from functional nets and contract specifications.
It also automatically generates executable access control tests
from the test models. The empirical studies using three Java
programs have demonstrated that our approach is highly
effective in detecting access control defects and that 56%-
82% of the executable test code is generated automatically.

The contribution of this paper is twofold. First, we pre-
sent methods for constructing operational RBAC test models
by integrating declarative RBAC rules with functional test
models represented by PrT nets or contracts (preconditions
and postconditions) of the associated access control activi-
ties. Because RBAC rules are non-functional constraints on
associated activities or system functions, our methods show
that the systematic testing of interrelated RBAC rules can be
built upon functional requirements. Second, we present an
approach to automated generation of executable test code
for exercising the RBAC rules. Once the MID (test model and
MIM) specification is completed, test generation and test
execution would need no human intervention. This automa-
tion has facilitated our empirical studies that aimed at evalu-
ating the fault detection capability of our testing approach
through mutation analysis. To the best of our knowledge,
neither of these aspects has been addressed in the literature.

This paper has focused on the testing of role-permission
assignments and user-role assignments in RBAC, where
users, roles, and permission rules are predefined. Our future
work will extend the current approach to the testing of Ad-
ministrative RBAC (ARBAC) policies, which specify how
administrators may change user-role assignments and role-
permission assignments [24]. Understanding and testing the
effects of an ARBAC policy are critical to system security.
The RBAC rules in our approach can be adapted to specify
ARBAC permissions to perform administrative operations
on user-role and role-permission assignments. Another di-
rection of future work is to extend the current approach for
automated testing of obligation policies, which are critical to
assuring information security and system accountability
[19]. Obligation policies allow expressing actions that users
should take to fulfill the responsibilities, in addition to usage
control requirements, the mandatory actions related with
some granted accesses. Obligation policies raise several chal-
lenges in automated test generation and execution. First,
how can we generate test actions when obligation rules can-
not be enforced by a computer system? Second, since obliga-
tion is usually related to a time window, how can we gener-
ate time-sensitive obligation tests? Third, how can we meas-
ure the test adequacy of obligation policy, particularly with
respect to timing conditions of obligation fulfillment and
violation? To address these issues, we will first need to en-
hance PrT nets for building testable models of obligation
policies.

Acknowledgment
This work was supported in part by NSF under grants CNS
1004843, CNS 1123220, and CNS 1359590.

REFERENCES

[1] M. Blackburn, R. Busser, A. Nauman, R. Chandramouli, “Mod-

el-based Approach to Security Test Automation,” Quality Week

2001, June 2001.

[2] Y. Deng, J.C. Wang, J. Tsai, and K. Beznosov, “An Approach for

Modeling and Analysis of Security System Architectures,” IEEE

Trans. on Knowledge and Data Engineering, vol. 15, no. 5, pp.

1099-1119, Sept. 2003.

[3] D.F. Ferraiolo and D.R. Kuhn, “Role-Based Access Controls,” In

15th NIST-NCSC National Computer Security Conference, Balti-

16 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

more, MD, October 1992, pp. 554-563.

[4] H.J. Genrich, “Predicate/Transition Nets,” Petri Nets: Central

Models and Their Properties, 207-247, 1987.

[5] H. Hu and G. Ahn, “Enabling Verification and Conformance

Testing for Access Control Model,” In Proc. of SACMAT’08, pp.

195-204, 2008.

[6] H. Huang and H. Kirchner, “Formal Specification and Verifica-

tion of Modular Security Policy based on Colored Petri Nets,”

IEEE Trans. on Dependable and Secure Computing, vol. 8, no. 6, pp.

852-865, Nov/Dec. 2011.

[7] Y. Jia and M. Harman, “An Analysis and Survey of the Devel-

opment of Mutation Testing,” IEEE Trans. on Software Engi-

neering, Vol. 37, No. 5, pp. 649-678, 2010.

[8] J. Julliand, P.A. Masson, R. Tissot, “Generating Security Tests in

Addition to Functional Tests,” In Proc. AST’08, pp. 41-44, 2008.

[9] J. Jürjens, “Model-based Security Testing Using UMLsec,” Elec-

tronic Notes in Theoretical Computer Science (ENTCS), 220(1):93-

104, December 2008.

[10] K. Knorr, “Dynamic Access Control through Petri Net Work-

flows,” In Proc. of ACSAC’2000, pp. 159-167, 2000.

[11] K. Li, L. Mounier, R. Groz, “Test Generation from Security Poli-

cies Specified in Or-BAC,” In COMPSAC'07, pp. 255-260, 2007.

[12] W. Mallouli, J.M. Orset, A. Cavalli, N. Cuppens, F.A. Cuppens,

“A Formal Approach for Testing Security Rules,” In Proc. of

SACMAT’07, pp.127-132, 2007.

[13] E. Martin and T. Xie, “Automated Test Generation for Access

Control Policies via Change-Impact Analysis,” The 3rd Int’l

Workshop on Software Engineering for Secure Systems, May 2007.

[14] A. Masood, R. Bhatti, A. Ghafoor, A. Mathur. “Scalable and

Effective Test Generation for Role-based Access Control Sys-

tems,” IEEE Trans. on Software Engineering, vol. 35, no. 5, pp.

654-668, 2009.

[15] A. Masood, A. Ghafoor, A., Mathur. “Conformance Testing of

Temporal Role-based Access Control Systems,” IEEE Trans. on

Dependable and Secure Computing, vol. 7, no. 2, pp. 144-158, 2010.

[16] B. Meyer, Object-Oriented Software Construction, 2nd Edition,

Prentice-Hall PTR, 1997.

[17] K.H. Mortensen, “Automatic Code Generation Method based

on Coloured Petri Net Models Applied on an Access Control

System,” Petri Nets 2000, pp. 367-386, Springer-Verlag, 2000.

[18] A.C. O’Connor and R.J. Loomis, “2010 Economic Analysis of

Role-Based Access Control,” RTI International, Dec. 2010.

http://csrc.nist.gov/groups/SNS/rbac/documents/20101219_

RBAC2_Final_Report.pdf

[19] J. Park and R. Sandhu, “The UCON ABC Usage Control Mod-

el,” ACM Trans. on Information and System Security. 7 (1) (2004)

128–174.

[20] A. Pretschner, Y. Le Traon, and T. Mouelhi, “Model-based Tests

for Access Control Policies,” In Proc. of ICST'08. Lillehamer,

Norway, April 2008.

[21] A. Pretschner, W. Prenninger, S. Wagner, C. Kühnel, M. Baum-

gartner, B. Sostawa, R. Zölch, and T. Stauner, “On Evaluation of

Model-based Testing and its Automation,” In Proc. of ICSE'05,

pp. 392-401, 2005.

[22] R. Sandhu, D. F. Ferraiolo, D. R. Kuhn, “The NIST Model for

Role-based Access Control: Towards a Unified Standard,” ACM

Workshop on Role-Based Access Control 2000: 47-63.

[23] B. Shafiq, A. Masood, J. Joshi, and A. Ghafoor, “A Role-Based

Access Control Policy Verification Framework for Real-Time

Systems,” In Proc. 10th IEEE Int’l Workshop Object-Oriented Real-

Time Dependable Systems, 2005.

[24] S. D. Stoller, P. Yang, C. R. Ramakrishnan, M. I. Gofman, “Effi-

cient Policy Analysis for Administrative Role Based Access

Control,” In Proc. of CCS’07, pp. 445-455, 2007.

[25] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools

Approach. 2006, Morgan-Kaufmann.

[26] D. Xu, “A Tool for Automated Test Code Generation from

High-level Petri Nets,” Petri Nets 2011, LNCS 6709, pp.308-317,

Newcastle upon Tyne, UK, June 2011.

[27] D. Xu, and W. Chu, “A Methodology for Building Effective Test

Models with Function Nets,” In Proc. of COMPSAC’12, Izmir,

Turkey, July 2012.

[28] D. Xu, and K.E. Nygard, “Threat-Driven Modeling and Verifi-

cation of Secure Software Using Aspect-Oriented Petri nets,”

IEEE Trans. on Software Engineering, vol. 32, no. 4, pp. 265-278,

April 2006.

[29] D. Xu, L. Thomas, M. Kent, T. Mouelhi, and Y. Le Traon, “A

Model-based Approach to Automated Testing of Access Con-

trol Policies,” In Proc. of SACMAT’12, pp. 209-218, Newark,

USA, June 2012.

[30] D. Xu, M. Tu, M. Sanford, L. Thomas, D. Woodraska, and W.

Xu, “Automated Security Test Generation with Formal Threat

Models,” IEEE Trans. on Dependable and Secure Computing, vol. 9,

no.4, 2012, pp. 525-539.

[31] D. Xu, J. Yin, Y. Deng, J. Ding, “A Formal Architectural Model

for Logical Agent Mobility,” IEEE Trans. on Software Engineer-

ing, vol. 29, no.1, pp. 31-45, January 2003.

[32] J. Zander, I. Schieferdecker, and P.J. Mosterman (eds.). Model-

Based Testing for Embedded Systems, CRC Press, 2011.

Dianxiang Xu (SM’01) received the B.S., M.S., and
Ph.D. degrees in Computer Science from Nanjing Uni-
versity, China. He is a professor in the Department of
Computer Science at Boise State University, USA. Prior
to joining BSU in 2013, he worked at Dakota State Uni-

versity, North Dakota State University, Texas A&M University, and
Florida International University. His research interests include soft-
ware security and safety, access control, software engineering, and
software-defined networking. He is a senior member of the IEEE.

Michael Kent received the B.S. degree in Computer
Science from Dakota State University, South Dakota,
USA in 2013. He is currently a software engineer at SDN
Communications, South Dakota, USA.

Lijo Thomas received the M.S. degree in Information
Assurance from Dakota State University, South Dakota,
USA in 2011. He is currently a security consultant at
Cognizant Technology Solutions, USA.

Tejeddine Mouelhi received his Ph.D. degree at Tele-
com Bretagne in France in 2010. He is currently a senior
security researcher in itrust consulting. From 2010 until
2014, he was a scientific collaborator at the University of
Luxembourg. He has published 25 peer-reviewed con-
ference and journal papers.
Yves Le Traon received his engineering degree and his
Ph.D. in Computer Science at the Institut National Poly-
technique in Grenoble, France in 1997. He is a profes-
sor of the Interdisciplinary Centre for Security, Reliability
and Trust (SnT) and the head of the CSC Research Unit
at University of Luxembourg. From 1998 to 2004, he

was an associate professor at the University of Rennes, France. His
research interests include software testing, model-driven engineer-
ing, model-based testing, evolutionary algorithms, software security,
security policies and Android security. He has published more than
140 peer-reviewed papers in international conferences and journals.

