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> What this talk is and is not

e Itisabout
— data collection, processing
— Analytics
— What-if simulation
— For complex loT/CPS
* Itisnot
— About security
* BUT could be used for risk management, prediction, simulation



> Predicting and prescribing

Forbes

I 41,294V
Germany to win FIFA World Cup 2014; predicts

waBlg Data Is Changmg Healthca1 Google, Microsoft and Baidu

ANNALS OF MOIENCE | MOVEMBER 11, 20

“lesuld bove 1o haee Paul the octopas to help me. bul he abready died, poor thiag. So | casnct predict amyihing

CLIMATE BY NUMBF_RS i
Tres was the concnion gl Shanva, the Comnmdran yscal mega-sar whert 0ad oA predung The workd oup fingd

MRS Dol tromdhs shoran thae Cermuary huw S5.6% chances of [Ifing the traphy s companed 104 14% of ttat of

Can a tech firm belp farmers nrvive global warming? PRI

BY MICHAEL SPECTER - ..

Israeli ‘web prophet’ maps the
past to predict the future

Dr. Kira Radinsky, 26, who started studying at the Technion at 15, wins
recognition from MIT for pioneering software that finds historical
patterns to point the way ahead




> Data, information, knowledge

are raw, unpolished
 Formatted and aggregated to be manipulated:

: what the human being can learn
from information

...hopefully for becoming wiser, reaching



> A kind of magic - decision supporgervices



> Next slide is a test: make a
choice, take decision

e Besilent

* |f you know this example, please keep it for
you



A kind of magic — decision support
services




A kind of magic — demsmn support




A kind of magic — decisiorl support
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A kind of magic — decision support
(&l Services




A kind of magic — decision support
services




10 seconds to answer

 Would you swap to the other door?
 Would you stick to your choice?



* Change the door: twices the chances to win



Follow the good star and find the best itinerary

Non-intuitive decision
 Basedon

Something that is

Surprisingly

A new information
*  No magic

— Science, maths and ...

— Sofware to make it efficient



> Ingredients for analytics

P(AIB) = P"”‘P‘;;? =D ;
The core: data science
— Probabilities and statistics
— 1A and Machine learning
* Supervised, PO e ST
— Classification, regression, anomalu-rdatartian | |

* Non-supervised
= Clustering; ==rnsintiancmalon
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> Ingredients for analytics

High Level
= Customizing 3 SOftwa re
—~  Expert-friendly =) '7‘|
-  Vizualization L
- \Farl':d altinn,!'vera:it-.r .. d e V e r y W h e r e

= Security and privacy

Low-level
= Sustainable, performant .
- Storage, -
— online processing = -
= Streaming .’
= Data retrieval



> Today’s talk is all about

software enablers for
analytics



> About us

*» Research from University of Luxembourg:
— Interdisciplinary Centre for Security, Reliability and Trust (5nT)
— SerVal Team (5Ecurity, Reasoning and VAlidation)
*  Authors:
— Thomas Hartmann: PhD student
— Francois Fouquet: Research Associate
— Assaad Moawad: PhD student
— @Gregory Nain: Research Associate
— Jacques Klein: Senior Research Scientist SEI’VH|
— Ywes Le Traon: Professor, Head of the SerVal research group securityandtrusty




Software Engineering for smart things: smart cities, grids, ...

> One of our research field

Intelligent Systems '
& Analytics +
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> Smarties




> Some research collaborations
with industry v At wumm

Paul Wurth SN e
. B Big Data for SmartBuilding
* CREOS - grid operator Recommendation systems
— Smartmeters/smart grid modelling and monitoring
— Managing security incidents Ville de Luxembourg ™\ e
Smart Building TUXEMBOURG
* POST (Telecom) h 'tr”5; i skl ——
PosT ecurity risk analysis— application to
— loT and SmartHome emart meters I
— Big Data for Smarthome z ﬂf{«ﬁﬁi
— Model-driven and middleware CETREL = credit card transaction

authorizations - -
+ EU project bloTope on SmartCities Analytics fortesting  C— TR—L

o 51 Cammparmy



Internet of Things to support Smart
Environments

— Homes, Offices, Buildings, Cities

Tests and Experimentations
— Flexible

— Adaptable

— Scale 1:1

Showroom
— Demonstrations
— Projects




> F|rst work Kevoree platform




> Cyber-physical systems

Examples

smart devices

internet of things




B
> Cyber-physical systems

What are cyber-physical systems?

* Interacting networks of physical and computational components
 Provide the foundation of critical infrastructures
* Form the basis of emerging and future smart services

 Will bring advances in personalized health care,emergency response,
traffic management, electric power generation and delivery, ...

http://www.nist.gov/cps/



B
> Cyber-physical systems

Need to autonomously take sustainable decisions...




> Case study smart grlds .




> Case study: smart grids

* To continuously analyze (in near real-time) the data
collected nowadays in smart grids (e.g., metering
data, topology data, ...)

Make “smart” decisions to autonomously stabilize and improve the state of the grid



> (ase study: smart grids

The problem is not the volume but the complexity oﬁ‘?ﬁ' |

=  The full grid is divided in n regions, Everg region is managed by a data concentrator whi-:h =|r| H’"“x‘.
turn manages 100 smart meters => 9600 consumption values per day

»  Around 10 cables in every region; cables are connected in cabinets ‘, "
»  Each smart meter is physically connected to one cable =1

»  Logical/communication topology changes frequently (depending on signal suengm} => arnu nd
30 changes per hour

Reactions need to be computed in milliseconds to seconds L ., g Comecion Paim

»  Every 15 minutes one consumption value per smart meter => 96 values per day per Meter commse ™ ‘J//

= a lot of small data sets which are semantically interconnected
—- Heterogeneous



> (ase study: smart grids

Example: electric load prediction

Ouestion: can an electric car be charged without danger of overloading?

Decision making:

smart grid topology




> For CPS and smart systemF

4 ™

¥ e nae |

Explore past, reason about present, predict futures, and
prescribe what to do... now

— Micro analytics

— Stream processing
=  MNear-real time

— MNavigate into past
* Fast navigation

— Aggregate heterogeneous data
* Models + semantics

= Manage distribution




> Models@run time
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> Model: Bridging the gap between data and abstraction

Storage T Live analytics
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> Open-issues and enablers

 Models are good for managing complex data: heterogeneous

* Models/DSL are more than a database schema
— Embed semantics, reasoning, operations

e But meant for
processing

software



> From Big-data analytics...

NGULAE{E
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Dt extrach l ; Data exiraction and

eyt Dt storage, : "3 e.-:?ct e q i S q transformiation, Visualization

e, collected from e.4. data warehouses ranstormation, mostly in batch e.q. for visualization
e, aggreqate, cube, filter, roll

SENSOS
up, ..

WEKA Machine learning,
s mathematical models,
business intelligence, ..,




> ...to model centric analytics
YA =

Live Analyiics

= i Visualization

Haw data 3 -
£.g., collected q Data extraction and q S e e ﬁ
2z - -—j-'-_'-;-_ Daka extraction and

from sensors transfarmation
transfiormmation

Wi G o e.g. decision making

L

iata storage

KMF framework



> All is about en_ablers

Learn from present not
only from past

Real-world is
usually continuous

Scaling with
heterogeneous
distributed data

From descriptive to prescriptive

Timed data
exploration

Smart data structures

/ (processing and storage)

Model instance

/distribution for scaling

Near real time
machine learning

"
E




> Proposed Solution:
Models@run.time based Analytics...



> Important enablers for model-driven data
analytics

 Enab
 Enab

 Enab

er 1. Modeling time-aware systems
er 2.Making models@run.time continuous

er 5.Distributed models@run.time

=> These enablers will be presented in more detail



Modeling time-aware systems




> Time machine for temporal models

e Storing time stamped objects is costly

build a “Time-machine” for free visit of past
observations '




> How to represent this context for
different times?

Regularly sample and store the context, or time series for each sensors




> Continuous models@run.time
(Hartmann et al., SEKE’14)

* Rather than querying a database, let’s consider a model as a virtually continuous
structure

— i.e.should be readable for any time, by extrapolating all of its values when READed

continuous

R aaa i

read time t read time t+3 read time t+n




> Behind the scenes

Read the system state by 2 am Jump to..

N

Wed 2 July
o000 01:00 200
meter 0 i, o @ 447 wH & AawH @ A0 wHl  35% wH
meter_1 o pwH 8 FidwH @ 45wH o 4zEwH B 334 wH
meter_2 s [ wi  1TTwH® e B FAEwH & 73wk
{Dmpgged o LS
I}t.l / meter_3 .; [ o AR wH o 30w & 51wH & 20 wH & 1 7EwH
meter.4 o 0w » 152wH g 3B wH o 79w I 15wk & 387 wh
I"I'Ill:'ldl'.-"l E‘iEﬂ'IE'ﬂtS meter_5 5 DwH & &84T we & 23wH & I58wH @ MywH B TEQw
{ i
meter 6 » oaH & 321 wH & 265 wWH #7113 wH & STEWH B

meter_7 [wH & 9twH & 500wH & 217w+ A5 wH BT Wk
.F-"'""F' .

Insert by the time of measure _
Time



> Performance impact?



Experiment

Case study is taken from a real-world problem from
Creos S.A.

Goal; predict electric load in a region based on current
load and a range of historical data
— data are retrieved at different times " .
— high percentage of reading errors FE
— predict if the load in a certain region will likely exceed or
surpass a critical value.

We compare snapshotting with time-distorted
approach (insert and read ability)

We vary the size of the history for the extrapolation
(the bigger the more accurate)

—  small; 10 hours history {30 time units)

= large: 2 month histary (4800 time units) »




Evaluation on SmartGrid exploration, Classic No50L versus Model+NaS0OL

> Measured impact

Google LevelDB
- Snapshotting compared to time-distorted contexts

soe 1075.6 ms 1.8 m=s
WP 1088 4 1.8
i e 267 ms 17 s
LDP 180108.0 ms 187.0 ms
LWP 181596.1 ms 157.6 ms

« @ Reasoning improvement (factor): 598 (SD), 1361 (SW), 963 (LD), 1152 (LW}

« @ Insertion improvement (factor): 17



> Enabler 2.
Continuous models@run.time




> Building continuous models N

« |dea: Using mathematical polynomials for 3“1{“*5):?1&:(1)*?’:{5)
continuous model attributes LR

. ) : ; 23R4 I5%
* Inspired by signal processing techniques

* Polynomials are able to describe and store a
continuous set of values

 Extend modeling techniques with
continuous data types

=> Robustness and storage and quick
manipulation




>

How to do in modeling techniques?

We add a new meta-attribute type for meta
models with an precision definition

The precision depicts the maximum tolerated
error for the model representation diverging
from the reality (measures)

The transparent polynomial management is
generated in the runtime models

Continous and non-continous data can be
mixed in the same meta-model and resulting
models
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We segment polynomials according to
the tolerated error...

an 4 i ] ] i
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> Performance impact?



> Experiments

* We evaluate our continuous models on / different CPS datasets (from best
to worst in term of signal complexity)

» We evaluate performance for read/write operations and for continuity
reconstruction ability (extrapolation of missing measures)

* 5 Millions points for each datasets

Database Sensor

D51: Constant c=42

DS2: Linear function | y=5x

DS3: Temperature DHT11 (0 50°C +/- 2'C)

DS4: Luminosity SEN-09088 (10 lux precision)
DS5: Electricity load | from Creos SmartMeters data
DS6: Music file 2 minutes samples from wav file
DS7: Pure random in [0;100] from random.org




> Storage: Read/Write operation results

Divide by 100 the needed storage (compression)
Continuous models are faster for all datasets, mainly because we drastically reduce the number of managed points in
the time index

We use Google's LevelDB NoSOQL database for storage

:

ki | Write operation ~ Read operation

e in weie 0 srcoee
g &

:

¥

Femridard
S
Temes mure
B p=rrride
Mecyarry
Tiawd
Baralors



> Robustness: Continuity reconstruction

* Tosimulate measurement losses we randomly drop one value among ten, then
we evaluate the ability of the continuous model to rebuild the signal after

 Continuous models are significantly better in all cases

Database Discrete | Linear | Polynomial
DS1: Constant 0% 0% 0%

DS2: Linear function | 5 % 0% 0%

DS3: Temperature 8.5% 3% 3%

DS4: Luminosity 9.9% 3.6% 3.5%

DS5: Electricity 17 % 7% 6%

DS6: Sound sensor 21% 15% 13%

DS7: Random 31.8% 31.1% | 30.8%




> Enabler 3. Distribution
Distributed models@run.time

Lt AL "
W



> Peer-to-peer distributed models

CPSs often rely on the collaboration of multiple devices
for smart decision making

Models@run.time have to scale to a "Big Data scale” and
must be accessible from everywhere

We defined models as observable streams of chunks (a
chunk contains one model element) exchanged in P2P
manner

We enable a transparent lazy loading (only retrieve
mandatory chunks) mechanism

Virtually the model is now complete and accessible from
every node. Data will be loaded asynchronously on when
needed.
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> Distributed Models@run.time architecture schema

conicams 1o

Peer-to-peer

______________

Dataspace Modaling spacs

i
i
i
3;5 |
=t
i

__________________________________________________



> Evaluation results

» We scale to models with millions of elements and thousands of connected, distributed
nodes (configuration of the smart grid Luxembourg for concentrator and number of
smart meters)

» Around 200 ms latency in the worst case (in order to create an alert for a smart meter)

Nodes Nb. [ Min(ms) | Max(ms) | Avg(ms) R i
200 11 188 88.01 P L b e =
400 63 220 128.75 ol BRSO et
600 87 253 169.52 S T R
800 102 289 185.62 T a7 7ot
1000 141 355 224.66 i i P ;'T T A

TABLE I G . S “w'*"{'-v..._m

MEASURED LATENCY (IN MS) TO PROPAGATE CHANGES



> Concrete application:
The Luxembourg smart grid



> Concrete application: smart grid

Probability of consumption data

1
i
i
1

T T —

Power consumption measures fin blue) Probability distribution function [pdf)
and average (in red) built by online live machine learning

&) Detection and warning if consumption values are suspicious (based on Gaussian mixture algorithms)



> Concrete application: smart grid

Our multi-profile, directly integrated into the model out-
performed standard error alarm system
context= weather, day, kind of customer

Attribute Single Profiler Multi-context profiler

Precision 0.602 0.808
Recall 0.99 0.99
Accuracy 0.779 0.918

F1 score 0.749 0.890



Electric load prediction on grid cables

« Goal: approximating the electrical load in cables in near real-time
- Results: only 5% derivation compared to a full ealculation with powerful power flow calculation tools

Movelty: leveraging our model abstraction, data analytic capabilities and simplified electrical
formulas
« Joint work with Yves Reckinger from Creos

« s integrated in-our pretotype implementation



> Electric load prediction on grid cables

« We demonstrated the precision of these extrapolations within a derivation of 5%
« We also demonstrated the ability to fulfill near-real time requirements

« This is now fast enough to be embedded in an on-field tablet for decision
support systems

Scennrio herall 'ﬂ!’lﬂﬂ_ Eﬂrﬂ_ E 400 ! | - "._r"'. :
Transformer Subatation | E il

{103 meem, 12 cobles) 190 ms 190 e (99959 < | om (0059 E 200 | _'/,_r"’r

Transformer Substation 2 g 0Ot Y= ' 3 —
{71 meters, 10 cables) ST ma 156 mm (PR < | ms (006%) 0 10 20 30
Transformer Substation 3 Grid complexity (number of cables)
56 metery, K cables) 143 ma 142 me (99 995 < 1 ma (0UOTS)

TABLE L  PERFORMANCE EVALUATION Fig. 5. Scalability of the electric load spproximation



> Conclusion



> Where are we?

Proposed an approach to enable what we call model-
driven analytics (for CPSs) with models@run.time

Developed a data framework called KMF based on this
approach (https://github.com/kevoree-modeling/
framework)

Developed a data analytics tool for the smart grid of
Creos in Luxembourg

Ported the data analytics tool to fully run on an
Android tablet

e LB S
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> What'’s next? Enable more

Integrating machine learning approaches into this model-
based approach

* Combining learned (virtual) and real data seamlessly in the
same model

* Learning for detecting failure patterns and anomalies in
data

»  Application to




> Thank you...
Questions?



« intelligently react to abnormal situations and ensure the
quality of the information » (P1 conclusion)

Ch, lock at this -
big data!’ o, . 15 he alive?

Ll




> It’s raining again!

Global / micro analytics



> It’s raining again! EEsaEs

¢ Global analytics
— Predict flood
* Micro analytics

— Prediction: will this particular street be
flooded

— Prescription: Can you find an itinerary
now for going there?




> Analytics for CPS: Smart Grid

Global analytics is looking for trends (e.g., commonalities between all smart meters)
Micro smart analytics is contextual (e.g., predict a particular sensor behavior..)

All customer consumption Hl h nl_
values are different.. h ‘I h_,,,“‘m',,h,“i ,/ \ hlliil

Rl e il el Ml i heat Ll Tl

J ‘/ Jumgs depend on users, weathers, [Bart De Mdor st 2lj

<4 u..\-_l'.hj J:JtLLLLL_N._J tlj.LkLl_l.-ﬂnJ i _

Global analytics alone isn't
what we want to do

i e FET RN .



>

> Data is dead... without what-if

e Datais temporal

e We can look at it,add it up, roll it up, cube it, summarize it,
compare it, filter it, join it, . g e

«  We can even find and learn useful patterns and detect trends REE—.ES
(machine learning) rebing. f B 8

«  However,...data is a record, not a conclusion or an insight or ¥S8 ot |
a solution "Bl

*  What-if: the useful information

To make sustainable decisions?



> It’s raining again!

Rain is a real time stream



Big Data or stream processing?

WHARRGARBL

Big Data and Stream processing

Both offer nice features... but smart systems are in the middle...
Reasoning need history, and must react in near real-time



> Classical data analytics

NGULARJS

=
% L Sp(’.‘lfl:'{ ama:m nede

Dat; £i d [ata extraction and

Raw data Drata storage, t “: E'-'!u"al:t iGn an nalytics Ry T

e.g. collected from £.4. data warehouses ranstermation, ' muﬂtl}' in batch I e.q, for visualization
e, aggreqate, cube, filter, roll

SENSOIS
up, .,

WEKA Machire learning,
wimme mathematical models,
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business intelligence, ...,




> And again!

Rain is not only about raindrops: heterogeneous and distributed data
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> It's raining again GESIEER
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* Many raindrnpsl
. Falllng aII the @
. . Evewwhere
. Depend on wind, temperature, topology ... heterogeneous data

=> Shall we store every falling drop, when and where they fall?

=> Shall we instead mode! drops, wind and represent them in a
simplified way (mathematical model) ?

Toward Model centric CPS



> (ase study: smart grids

The problem is not the volume but the complexity oﬁ‘?ﬁ' |

=  The full grid is divided in n regions, Everg region is managed by a data concentrator whi-:h =|r| H’"“x‘.
turn manages 100 smart meters => 9600 consumption values per day

»  Around 10 cables in every region; cables are connected in cabinets ‘, "
»  Each smart meter is physically connected to one cable =1

»  Logical/communication topology changes frequently (depending on signal suengm} => arnu nd
30 changes per hour

Reactions need to be computed in milliseconds to seconds L ., g Comecion Paim

»  Every 15 minutes one consumption value per smart meter => 96 values per day per Meter commse ™ ‘J//

= a lot of small data sets which are semantically interconnected
—- Heterogeneous



> Again and again!

Real-world is a mix of continuous and discrete phenomena: a drop has a continuous trajectory



> Models for CPS data...

*  Physical measurements are continuous values

e.g, temperature, weather, time, consumption data, ...
« To process these measures in computer systems

we discretize them

» (an easily lead to millions of values awl X Ky X X
« This is challenging for storage and computation power

* However, these values often don't change or only change insignificantly

«  This wastes storage and computation power

=> The model is an abstraction
=> Knowing the domain definition, can we perfom better than just storing raw data in a database?



> Models as smart system brains

[Data Extrapula?ﬂ
rd H

[ Measured Data ]

)

[ Data !nte!ligence]




> However...

» Sampling at avery high rate leadstoa .=
massive stack of samples (deep queries) . “ -~
* Time series per model element leads to )
very wide queries to extract a context .. ..

=> find, extract,and analyze a relevant
context view is very hard to do within near
real-time requirements




> Time-distorted contexts

How we see the time now?
An on-demand (lazy loading) view in a continuous model...

Based on three pillars

) Temporal validity for model elements

) Navigating through time

=) Time-relative navigation



> Detection of important sections of signals... H
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