

Fast and Optimal Countermeasure Selection for Attack Defence Trees

18.10.2016

RISK16 workshop

Steve Muller Carlo Harpes Cédric Muller

itrust consulting s.à r.l. 55, rue Gabriel Lippmann L-6947 Niederanven Tel: +352 26 176 212 Fax: +352 26 710 978 Web: <u>www.itrust.lu</u>

Risk context: ÉpStan

Monitor the quality of the educational system of secondary school

Risk context: ÉpStan

psei	ıdonym	
	persona	al data
results		results

Attack Tree

Attack Tree

Attack Defence Tree

Defences

Optimal countermeasure selection

RISK	add	remove
Probability [link test results] × Impact [link test results]	defence	defence
COST Sum of costs of implemented defences		₽

OPTIMISATION PROBLEM

Which countermeasures reduce risk best at the lowest cost?

Naïve algorithm

Brute-force: Try out all combinations of selecting counter-measures

Naïve algorithm

Problem: Needs 2^n iterations for *n* counter-measures

 $3,32 \cdot 10^{35}$ iterations for **118** counter-measures (unfeasible to compute)

 $1,10 \cdot 10^{12}$ iterations for **40** counter-measures (**13 days** with 1 iteration per millisecond)

Improved algorithm

- Subsequent choices will:
- Increase number of defences
- Reduce risk

Once a defence becomes unprofitable, it will remain unprofitable.

→ Can skip all further combinations

Improved algorithm: Performance

	random attack- defence tree	ÉpStan use-case
Naïve brute-force		54,2 seconds
Brute-force with data structure	$4 \cdot 10^{15}$ years	0,92 seconds
Branch and bound	15 minutes	0,36 seconds
	(81 attacks, 90 defences, 7290 effectiveness values)	(81 attacks, 16 defences, 58 effectiveness values)

Thank you.

predict prioritise prevent TRESPASS

This work was supported by the European Commission's Seventh Framework Programme (FP7/2007-2013) under grant agreement number 318003 (TREsPASS).

This work was supported by

Fonds National de la Recherche Luxembourg

(project reference 10239425)