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ABSTRACT 

Existing Global Navigation Satellite Systems offer no authentication of their satellite 

signals towards their civilian users. As a consequence, several types of GNSS-related 

attacks, including meaconing, may be performed and remain undetected. In the scope of 
the project “Developing a prototype of Localisation Assurance Service Provider”, which 

is funded by ESA and realised by the company itrust consulting and the University of 

Luxembourg, a methodology to visualise the beginnings and the ends of meaconing attacks 

by monitoring the clock bias of an attacked receiver over time was developed. This paper 
presents an algorithm that is based on this attack visualisation technique and is capable of 

detecting meaconing attacks automatically. Experiments in a controlled environment 

confirmed that the chosen methodology works properly. In one of these tests, for example, 
six meaconing attacks were simulated by using a GNSS signal repeater. The algorithm was 

able to detect the beginnings and the ends of all six attacks, while resulting in no more than 

two false positives, even though the average delay introduced by the meaconing stations 

(repeater) was just 80 nanoseconds. 

1. INTRODUCTION 

Over the last two decades, the use of Global Navigation Satellite Systems (GNSS) has 

become extremely popular. Thanks to the freely available positioning systems GPS, the 
Russian alternative GLONASS, and in a couple of years also the European constellation 

Galileo, navigation systems are not only available to the military but also accessible in the 

civil domain with a relatively high precision. In addition, the decreasing price of GNSS 
receivers as well as the trend of using more and more mobile devices led to the integration 

of the use of positioning systems in most people’s everyday life. 

In the meantime, an important number of Location-Based Services (LBS) became 

available. A Location-Based Service Provider (LBSP) offers a service to a customer that 
depends on the customer’s location. The customer uses a GNSS enabled device to make a 

request to the LBSP. This request includes the customer’s position, which influences the 

answer to the request. A typical example is location-based access control, where access to 
a resource is granted only if the access request was issued from within a certain area. Other 
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examples include the tracking of valuable assets or hazardous materials by a transport 

management centre, the enforcement of road toll payment by governments, and the 

monitoring of journalists in dangerous areas of the world. 

As explained in (Scott, 2007), there are good reasons to attack such systems, mainly 

because of prospects for financial gain. Moreover, the transmission of information takes 

place over radio links, which are by their very nature insecure channels (Hein et al., 2007), 

making it even easier for a potential attacker to succeed. The military and commercial 
positioning services are encrypted and hence offer sufficient protection against most 

attacks. The freely available services, however, neither are encrypted nor signed by the 

satellites and thus guarantee neither the integrity of the GNSS signals nor the 
authentication of the sender of the signals. In other words, open services offer no built-in 

functionalities to their users to check whether the received signals really originate from a 

navigation satellite and whether the signals were altered by a third party since they were 

broadcast. 

As civilian positioning applications will be used more and more in fields related to safety 

and security (Hein et al., 2007), it is unavoidable to also think about security mechanisms 

to protect the users of the free positioning services. Several solutions that intend to ease 
authentication by modifying the current structure of the GNSS signals have been proposed. 

One could, for example, use a signature scheme, i.e. compute a hash value of the message 

before sending it, sign this hash with a private key only known to the space segment 
(satellites) and the control segment (authorised ground stations), and append the signature 

to the message. A corresponding public key could then be used by anybody to verify the 

authenticity of the message. This technique is called Navigation Message Authentication 

(NMA) and is described, for example, in (Hein et al., 2007). However, as explained in the 
same article, NMA and similar techniques bring their own problems and as stated in 

(Stansell, 2007), it is unlikely that modifications to the GNSS signal structures will be 

done in the near future. Therefore, it is important to find location assurance solutions that 
do not require any changes to the structure of the GPS, GLONASS and Galileo signals. In 

(Harpes et al., 2009), the authors propose the architecture depicted in Figure 1 as a possible 

solution. 

The idea is the following: After having computed its location from the captured GNSS 

signals, the user device (UD) sends a set of data to a Location Assurance Provider (LAP). 

This data includes the computed location, as well as other information that can be derived 

from captured signals or from the user device itself. The LAP analyses the data and 
decides whether or not it is authentic. It then returns a certificate to the user device that is 

bound to the previously received data set and that contains an assurance level. The higher 

the assurance level, the more trustworthy is the data set according to the LAP. The user 
device forwards the received certificate to a Location-Based Service Provider (LBSP) 

instead of just sending the computed location. Finally, the LBSP can use the public key of 

the LAP to check whether the certificate is authentic. In addition, a Public Key 

Infrastructure (PKI) is used to check whether the certificate was really issued by the 
intended LAP. 
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Figure 1: The LASP architecture – inspired by (Harpes et al., 2009) 

In their current project “Developing a prototype of Localisation Assurance Service 
Provider (LASP)”, itrust consulting s.à r.l. and the University of Luxembourg aim at 

implementing the architecture presented above, which is in the following referred to as 

LASP architecture. The main security requirements of the project are given below: 

 Let L be a location. Then, a user either is or is not located within a certain radius R 

around L. If he claims towards an LBSP to be at L, the probability that he is indeed 

at a maximal distance R from L is at least as high as implied by the assurance level 

issued by the LAP. 

 If a user wants to connect to the LAP or a LBSP, he should be able to do so. 

 Users should be able to control the amount of personal data that is sent to service 

providers (e.g. the precision of their location). 
 

From these requirements, we identified four security properties, namely confidentiality, 

integrity, availability and authenticity. In this document, however, we focus on meaconing 
attacks only. Meaconing is the interception and rebroadcast of navigation signals in order 

to confuse navigation (Harpes et al., 2009). It does not modify the signals but delays their 

arrival at the GNSS receiver. Since the sender of the relayed signals is not a satellite, the 
source of the messages is not the intended one and hence, meaconing attacks break the 

authenticity property. 

Since navigation satellite systems are based on the concept of time of arrival ranging (cf. 

Section 2.2), the introduced delay falsifies the computed user positions. The data sets that 
contain (among others) the false information are sent to the LAP, whose task it is to detect 

this and similar types of frauds. To do so, it runs in a first step a number of so-called 

security checks. These are algorithms that get as input specific parts of the received data 
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sets and output their opinion on whether the analysed information is authentic. Thereby, 

the output is for most checks not a Boolean answer, but a probability expressing the 

plausibility of the claimed location. In a second step, the outputs of all executed security 
checks are merged in order to determine the assurance level. 

In this paper, we present the clock bias security check, an algorithm that was explicitly 

designed for the detection of meaconing attacks. Due to the fact that these attacks always 

involve signal delays, timing information can be considered to recognise the attacks’ 
beginnings and endings. The idea of performing time comparisons in order to detect 

GNSS-related attacks was already mentioned in some publications (e.g. (Scott, 2007)), but 

to the best of our knowledge, we are the first to put it into action and thus to face issues 
related to its implementation. 

The remaining part of this document is structured as follows: Section 2 introduces the 

theoretical background that the clock bias security check is based on and Section 3 

discusses the experimental setup that was used for the development of the check. Finally, 
the algorithm itself is presented in Section 4, followed by a summary of the paper and a 

discussion on future work in Section 5. 

2. THEORETICAL BACKGROUND 

In this section, we provide the background knowledge that the reader needs to understand 

the basic idea behind the clock bias security check. Except where indicated otherwise, the 

information provided in Section 2 is based on (Kaplan et al., 2005). 

 TIMING INFORMATION 2.1

Each satellite and each GNSS receiver is equipped with a clock, and the difference in time 

between such a clock’s value and a pre-defined reference time is referred to as clock bias 
(Hurn, 1989). In contrast, the drift of a clock is expressed in seconds per second (s/s) (El-

Rabbany, 2006). It is the first derivative of the clock bias with respect to time. Hence, a 

clock bias arises due to the fact that clocks drift over time. 

The smaller the drift of a clock, the better (the closer to zero) is its accuracy. Satellites, on 

the one hand, have an atomic clock on board (El-Rabbany, 2006). This type of clock offers 

a very high accuracy (e.g. 10
–14

 (Novick, 1994)) and is therefore nearly drift-free. Thus, we 

consider the clock bias of a satellite clock towards a non-drifting reference to be constant. 
Ground stations that monitor the satellites are equipped with atomic clocks, too (El-

Rabbany, 2006). Receivers, on the other hand, are usually equipped with a crystal clock to 

minimise the cost and the size of the user devices. Crystal clocks are by nature far less 
accurate than atomic clocks. In addition, their drift is influenced by environmental 

conditions, like temperature (Vig, 2008). 



5 

A clock may be synchronised with its reference time. In other words, the clock’s value 

may be adjusted to avoid letting its clock bias towards the reference become too large. We 

call synchronisation instant an instant of time at which synchronisation occurs. 

A number of time reference systems are used worldwide, two of which are UTC 

(Coordinated Universal Time) and GPS time (El-Rabbany, 2006). The former is related to 

the rotation of the earth and must occasionally be adjusted to keep it synchronised with the 

planet’s solar time. This is done by adding so-called leap seconds. In contrast, GPS time is 
computed from the time scales generated by the atomic clocks of both the GPS satellites 

and the GPS ground segment. It is a continuous time scale, i.e. no leap seconds are applied. 

Originally (in 1980), GPS time was consistent with UTC. However, the latter was 
increased 15 times by one second since then and therefore is 15 seconds ahead of GPS 

time, now. Since GPS is currently the most important Global Navigation Satellite System, 

GPS time is used as reference time, here. Hence, we define the clock bias b of a receiver at 

time t to be the difference between the receiver’s clock value τr at time t and GPS time τGPS 
at time t: 

 stttb GPSr )()()(   . 

As it is common in computer science, we consider time to be a discrete quantity and 
therefore choose a vector representation for physical values that are not constant over time. 

In other words, a function f(t) with nt 0  (and t an integer) is represented by the vector 

(f0,…,fn–1). Thereby, ft is equal to f evaluated at time t. For example, bt denotes the clock 

bias at time t. 

 POSITION DETERMINATION 2.2

A GNSS receiver captures navigation signals broadcast by satellites to determine its 

position at time t. The coordinate system that is used to compute such positions rotates 

with the earth and its origin is located at the centre of the planet. Therefore, it is referred to 
as Earth-Centred Earth-Fixed (ECEF) system (Borre et al., 2007). The x-axis points 

towards the intersection between the equator and the Greenwich meridian and the z-axis 

points towards the geographical North Pole, i.e. it overlaps with the spin axis of the earth. 

The y-axis is orthogonal to the x- and the z-axis and thereby forms a right-handed 
coordinate system. Note that the x- and the y-axis together define the equatorial plane. 

A vector representation of the receiver’s position in the ECEF system at time t is given in 

Figure 2. The position of the receiver is denoted by rt, while that of satellite i is denoted by 
st

(i)
. Furthermore, ut

(i)
 refers to a vector that has its origin at the receiver and points towards 

satellite i. Its length |ut
(i)

| is equal to the Euclidean distance between the receiver and the 

satellite in meters. 

Thus, determining the receiver’s position at time t is equivalent to computing the vector rt. 

In the following, a solution to this problem is discussed. The time indicating indices are 



6 

omitted, as the position determination procedure given below does not rely on information 

related to a time tt   to calculate a receiver’s position at time t. 

 

 

Figure 2: Vector representation of the receiver position at time t – inspired by (Kaplan et al., 2005) 

The idea of the position determination procedure is to compute r from s
(i)

 and u
(i)

. Thereby, 

s
(i)

 can be computed by the receiver based on data contained in the navigation signals 

broadcast by i. In contrast, u
(i)

 cannot be found directly. The subsequent paragraphs explain 
how it may nevertheless be used to compute r. 

Global Navigation Satellite Systems are based on the concept of time of arrival ranging. 

When a signal arrives at the receiver, the value of the receiver’s clock is compared to 
timing information contained in the signal to measure the distance between the receiver 

and the satellite that broadcast the signal. If the receiver’s clock was perfectly 

synchronised with the satellite’s clock, the measured value ρ
(i)

 would be equal to the 

physical distance |u
(i)

| between the objects. As explained in Section 2.1, however, only the 
satellite’s clock is considered to be drift-free and hence the clock bias b of the receiver 

cannot be assumed to be zero. As a consequence, ρ
(i)

 is biased by the term c  b, where c is 

the speed of light (299792458 m/s), i.e. the traveling speed of the signal: 

 mbcu ii  || )()( . 

So, ρ
(i)

 is in general different from |u
(i)

| and is therefore called the pseudo-distance (or 
pseudo-range) between the receiver and satellite i. 

As  ρ
(i)

 = |u
(i)

| + c b  and  u
(i)

 = s
(i)

 – r, it holds that  ρ
(i)

 = |s
(i)

 – r| + c  b. In a 3-dimensional 

setting, r is equal to (rx, ry, rz), which means that including b, there are four unknowns. 
Thus, a minimum of four equations is required to solve the problem, which implies that at 

least four satellites must be visible to determine a receiver’s position. As a side effect, 

solving the equations also provides the receiver’s clock bias b, which is essential for the 

clock bias security check. 
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3. SYSTEM DESCRIPTION 

In this section, we provide details on the experimental setup that was used for the 

development of the clock bias security check. This includes on the one hand a description 
of the employed LASP user device and on the other hand a way to simulate meaconing 

attacks. 

 THE LASP USER DEVICE 3.1

Typically, one would think about a user device as a single piece of technology such as a 

smartphone. At the current stage of the project, however, the user device of the LASP 

architecture is composed of three components, namely a GNSS antenna, a GNSS receiver 

and a personal computer (Figure 3). The antenna (Novatel GPS-703-GGG) and the 
receiver (JAVAD Delta-TRE) are professional equipment and therefore offer more 

functionalities than standard GNSS devices. They are linked via a coaxial cable and the 

receiver is connected to the personal computer via Ethernet. The reader should be aware 
that the choice of these components also influenced the design of the security check 

described in this paper. 

 

 

Figure 3: The user device of the LASP architecture 

 RECEIVER BEHAVIOUR 3.2

As the receiver JAVAD Delta-TRE is part of the user device, its behaviour had to be 

known in order to develop an efficient security check. The device’s functionalities are 

documented ((JAVAD, 2010) and (JAVAD, 2011)), but not to the level of detail that was 
required for this work. Therefore, several experiments were conducted in order to reverse 

engineer the receiver’s specific behaviour. It follows a summary of the findings that turned 

out to be relevant for the design of the clock bias security check. A more detailed 

presentation of these results can be found in (Marnach, 2012). 
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A synchronisation mode is a methodology that defines when and how a receiver’s clock 

will be synchronised with a pre-defined reference time. JAVAD Delta-TRE offers only one 

synchronisation mode that is suitable for the type of security check described in this 
document. It is called ms and defined as follows in (JAVAD, 2011): when the time 

difference (clock bias) exceeds 0.5 milliseconds, correct receiver time by 1 millisecond. 

This synchronisation mode was active during all our recordings. 

We recall that the clock bias b of a receiver is the difference between the receiver’s clock 
value and GPS time. A sample recording of our receiver’s clock bias over time is depicted 

on the left side of Figure 4. The plotted curve is called clock bias function. As the 

receiver’s synchronisation mode is set to ms, the absolute value of the clock bias is allowed 
to grow over time. In this case, the receiver clock runs faster than its reference. As a 

consequence, one millisecond is subtracted from the clock bias each time it becomes larger 

than half a millisecond. If this happens at time t, then t is a synchronisation instant and 

1t  is a pre-synchronisation instant, i.e. the last instant of time before synchronisation 

occurred. A part of the clock bias function that starts at a synchronisation instant and ends 

at a pre-synchronisation instant is called a complete period. It is important to note that 
different periods have in general different lengths and that each period is a set of (t,b)-

points, where t is a time value and b the receiver’s clock bias at that time. The clock bias 

function is hence a time-discrete function. Moreover, it was found out that GNSS signal 
outages have no influence on the clock bias, except interrupting the curve for the duration 

of the loss. 

 

 

Figure 4: Clock bias (left) and clock drift (right) over time 

Since different periods have different lengths, one can conclude that the time derivative of 
the clock bias is not constant. We recall that this derivative is equal to the clock’s drift, 

which is expressed in seconds per second. The clock drift function corresponding to the 

clock bias function discussed earlier is shown on the right side of Figure 4. As expected, it 
is not constant over time and hence, periods are not straight lines. Also, it was found out 
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that the clock drift is strongly influenced by the receiver’s temperature. In fact, the relation 

between the drift and the temperature is almost linear, which means that other 

environmental influences on the drift may be neglected. After switching on the receiver (at 
room temperature), it takes about 100 minutes for the receiver temperature to become 

stable. 

 MEACONING ATTACKS 3.3

For now, we do not have the technical means to perform real meaconing attacks. Instead, 

we simulate such attacks on the LASP user device by employing a GPS signal repeater. 

A repeater receives GNSS signals and forwards them without modifying their content. The 

signal processing will, however, take an amount of time Δt > 0 to be completed. Thus, a 
repeater always delays the signals it forwards. In Section 1, it was explained that a 

meaconing attack does not modify signals but delays their arrival at receivers. Hence, the 

effect of a meaconing attack and the effect of a repeater usage on GNSS signals are 
comparable. 

The repeater (which comes with its own antenna) and the antenna of the LASP user device 

are both connected to the inputs of a coaxial switch. The latter’s output is then connected 
to the signal input of the receiver. In this way, it is possible to switch between two user 

device architectures, one containing the repeater and one not containing it. Thereby, the 

architecture that contains the repeater symbolises a device that is under attack and hence, 

switching back and forth between the architectures once represents the beginning and the 
end of an attack. 

4. THE CLOCK BIAS SECURITY CHECK 

This section covers the development of the clock bias security check. First, the 
mathematical theory behind the check is introduced. It is based on the theoretical 

background provided in Section 2. Second, the ten steps of the algorithm are discussed one 

by one. 

 BASIC IDEA 4.1

We suppose that it is possible to detect meaconing attacks by observing the clock bias of a 

GNSS receiver over time. In this subsection, it is explained why it is realistic to make such 
an assumption and how the influence of an attack on the clock bias is assumed to look like. 



10 

From Section 2.2 it is known that at time t,  ρt
(i)

 = |ut
(i)

| + c bt, where i is a satellite, ρt
(i)

 the 

pseudo-distance between the receiver and i, |ut
(i)

| the real distance between both objects, c 

the speed of light and bt the receiver’s clock bias. 

Assume now that a meaconing attack M, starting at time g and ending at time h (i.e. the 

domain is [g,h]), is performed to delay the arrival of i’s signals at the receiver. This 

directly affects the pseudo-distance since the latter’s measurement is based on the signals’ 

travelling time. As ρt
(i)

 is equal to  |ut
(i)

| + c bt, it holds that  bt = (ρt
(i)

 – |ut
(i)

|) / c. In a first 
step, suppose that the location of the receiver and the satellites would remain static. With 

(i)

1g

(i)

g    and (i)

h

(i)

1h  
, while |u

(i)
| and c both remain constant over time, it is clear that 

1 gg bb  and 
hh bb 1
. So, by delaying signals from satellite i, an adversary artificially 

modifies a receiver’s clock bias, if the receiver uses i’s signals to compute its position. We 

conclude that it should be possible to detect the beginning and the end of M by looking for 
changes of the clock bias over time. To be precise, an increase of the clock bias refers to an 

attack’s beginning, while a decrease alludes to its end. The larger the signal delay caused 

by M, the bigger the difference between bg and bg–1, and between bh and bh+1. In a second 
step, it must be considered that the clock’s natural drift influences the clock bias, too, and 

that the physical distance between the receiver and the satellites does not remain constant 

over time. However, we expect these influences to not result in unpredictable abrupt 

changes of the clock bias. 

An adversary who tries to falsify computed positions by using meaconing attacks has to 

introduce a large delay in order to significantly deviate from the receiver’s real position. 

This can either be done by applying one large delay or by starting with a very small delay 
which is then increased over time. The first method results in one abrupt change of the 

clock bias, while the second one results in a sequence of changes that can also be 

considered as abrupt unless the gradual changes of the delay are really small. If we assume 
that it is not feasible to effectively falsify a position by gradually changing the clock bias, 

it should be possible to detect meaconing attacks by looking for abrupt changes of the 

clock bias function. 

 ATTACK VISUALISATION 4.2

As an experiment, our receiver’s clock bias was recorded while the LASP user device was 

under a meaconing attack. This was realised by adding a GNSS signal repeater to the user 
device architecture (cf. Section 3.3) after about 5770 seconds of recording and by 

removing it again after about 6440 seconds of recording. So, the data collection started 

prior to the beginning of the attack and terminated after the end of the attack. 

The goal of the test was to manually detect the beginning and the end of the attack by 
applying the theory described in the previous section, i.e. by looking for abrupt changes of 

the clock bias over time. However, it turned out that the abrupt changes of the clock bias 

function are not visible to the naked eye. Thus, another graphical representation of the 
recorded values was chosen. It is specified in the subsequent paragraph. 
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Let S be a set of (t,b)-points. Then first, a regression line with respect to S, i.e. a line that 

“fits best” all the points in S, is computed. Thereby,  b
(S)

(t) = α
(S)  t + β

(S)
  denotes the 

regression line’s equation and the method of least squares is applied to determine the 
coefficients α

(S)
 and β

(S)
. Second, we define the clock bias error e at time t with respect to S 

to be the difference between the clock bias b at time t and the evaluation of b
(S)

 at time t: 

)()()( tbbe S

t

S

t  . 

The clock bias error is of much smaller magnitude than the clock bias itself and therefore, 

it is possible to make the effects of the meaconing attack visible by plotting the clock bias 

error over time. For this particular experiment, S was chosen to be the set of all (t,b)-points 

such that t [4822, 7160], which corresponds to the period during which the attack 

occurred. The resulting clock bias error function e
(Period)

 is depicted in Figure 5. There are 

two abrupt changes of this function, one at 5778t  and one at 6438t . They symbolise 

the beginning and the end of the attack, respectively. 

 

 

Figure 5: Clock bias error 

It was decided to base the new graphical representation of the recorded data on linear 

regression because the observed clock bias function (Figure 4) is approximately linear. 

However, it could be that for other types of receivers, approximation polynomials of higher 
degree are preferable. 

The experiment showed that it is indeed possible to visualise a meaconing attack and 

hence, it should also be possible to develop an algorithm that is able to detect such attacks 
automatically. 

Beginning 
of attack 

End of 
attack 
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 DETECTION ALGORITHM 4.3

In this section, an algorithm that is capable of detecting the beginning and the end of 

meaconing attacks automatically is presented. Its design is strongly inspired by the attack 
visualisation technique described previously. 

 ASSUMPTIONS 4.3.1

The following assumptions are made for the development of the detection algorithm: 

 The data interval is the time in seconds that elapses between the recording of two 

consecutive clock bias values at the user device. It is not identical for all types of 

devices and may also be changed over time for a particular unit. For now, 

however, we assume that data intervals are constant over time. 

 Each data set that is passed to the Location Assurance Provider by the user device 

contains at most one reference time value and one clock bias value. It is supposed 

that the Location Assurance Provider is capable of extracting these values from the 

set in order to form (t,b)-points. 

 It is assumed that the receiver temperature is more or less constant over time. In 

principle, this means that the device has been running for at least 100 minutes (cf. 

Section 3.2). 

 LEAPS 4.3.2

Henceforth, we refer to an abrupt change of the clock bias error function by the term leap. 

Thereby, a leap is not a scalar, but a set of two (t,e)-points. In the following paragraphs, the 

vocabulary that is used to reason about leaps is specified. 

Let λ be a leap. Then λ visually divides a plotted clock bias error into two parts, which we 

call the pre-leap curve A of λ and the post-leap curve B of λ. 

Let g denote the end time of A and h the starting time of B. Then (g,eg) and (h,eh) are the 

last point of A and the first point of B, respectively, and we say that λ starts at g and ends at 
h. As a consequence, the difference between h and g is called the leap duration of λ: 

duration(λ) = h – g. 

There may be some (t,e)-points such that g < t < h, i.e. that belong neither to A, nor to B. 
In that case, we say that λ includes detached points. In Figure 5, for example, the leap that 

is caused by the end of the attack includes detached points, while the one caused by the 

beginning of the attack includes none. Due to detached points, the duration of a leap is not 
always equal to the data interval. 
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We define the leap value of λ to be the difference between eh and eg. Moreover, we refer to 

the absolute value of the leap value as leap height: value(λ) = eh – eg and 

height(λ) = |value(λ)|. 

The reader should be aware of the fact that the definition of the term leap depends on the 

visual division of a plotted curve into two parts A and B. So, the division criterion, which is 

not well-defined, has an influence on the dimensions of a leap λ. However, if the end time 

and the duration of λ are known, the value of λ is well-defined:  value(λ) = eh – eh–duration(λ). 

 OBSERVATIONS 4.3.3

By simulating further meaconing attacks and analysing the collected data, the following 

two observations were made: 

 A leap ending at time h can also be visualised by using merely the (t,b)-points such 

that ht   to compute the regression line. Thus, it is possible to detect a leap 

immediately after its triggering event (beginning or end of attack) occurred. 

 Among all the leaps that were detected manually, the minimum height was about 

0.65  10
–7

 seconds and the average height was about 0.8  10
–7

 seconds. This means 

that the smallest delay introduced by the employed repeater was 65 nanoseconds 

and the average delay was 80 nanoseconds. 

Please note that both observations are based on experiments that were conducted with a 

data interval of 1 second. 

 ALGORITHM DESIGN 4.3.4

The detection algorithm is executed once for each (t,b)-point that arrives at the Location 

Assurance Provider. We recall that each data set that is passed to the LAP by the user 

device of the LASP architecture contains at most one of these points. Thereby, missing 
points (sets without timing information) indicate that signal outages occurred. The 

algorithm’s input and output is specified below: 

 Input: 

o The arriving (t,b)-point P. 
o n (t,b)-points that arrived in the past, where n is a pre-defined integer 

larger than zero. Thereby, it is recommended to use the n points that 

directly preceded P. 

o The data interval of the user device (cf. Section 4.3.1). 

 Output: 

o The probability that the time value t of P is not the starting time or the end 

time of an attack. This is a convention of the LASP project. 
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The history length, denoted by histLength, is defined to be the total number of (t,b)-points 

that are provided to the algorithm, hence n + 1. 

Let time[] and bias[] be two arrays of size histLength, containing the time values and the 
clock bias values of all the (t,b)-points that are provided to the algorithm in chronological 

order. Thereby, (time[0], bias[0]) denotes the oldest point and (time[n], bias[n]) the one 

that just arrived at the Location Assurance Provider. Then, time[n] is automatically 

suspected for being the end time of a leap λ and the algorithm’s task is to give its opinion 
on whether time[n] is “guilty” or “not guilty”. To do so, the following ten steps are 

executed: 

(1) Set parameters 

The parameters minLeapDuration, detectionBound, minProba and maxProba are set. Their 

meanings are given below: 

 As explained in Section 4.3.2, the end time of a leap and the leap’s duration must 

be known in order for the leap’s value to be well-defined. Here, λ’s end time is 

equal to time[n], but its duration is unknown. Hence, the latter is estimated. The 
parameter minLeapDuration denotes the estimated duration. 

 The detectionBound is a value to which λ’s height is compared to in order to 

decide whether time[n] is guilty or not guilty 

 minProba and maxProba denote the minimum and the maximum possible values 

that are output by the algorithm. 

(2) Gather information about the window 

The set of all (t,b)-points that are provided to the algorithm is called the algorithm’s 

window. We distinguish between the length and the duration of the window, denoted by 
winLength and winDuration, respectively. winLength represents the number of points that 

are in the window and is hence equal to histLength, while winDuration stands for the time 

span (in seconds) that is covered by the window. It is equal to the difference between 

time[n] and time[0]. Please note that  winDuration   (winLength – 1) dataInterval  if any 
signal outages occurred inside the window. 

(3) Undo synchronisation inside the window 

Leaps are not only caused by the beginnings and the ends of meaconing attacks, but also 
by clock synchronisations. As a consequence, synchronisation instants would be thought 

guilty. In addition, synchronisation complicates the computation of regression lines. These 

problems can, however, be prevented by undoing synchronisation inside the window. If 

there is an s [0,n] such that time[s] is a synchronisation instant, then for each x [s,n], 

the value of bias[x] is modified with the objective of simulating a scenario in which 
synchronisation did not occur. 
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(4) Compute a regression line with respect to the window 

A regression line b(t) with respect to the algorithm’s window is computed. As explained in 

Section 4.2, that means that the coefficients of the line  b
(Window)

(t) = α
(Window)  t + β

(Window)
  

must be determined. 

(5) Determine the leap’s starting time 

Since λ’s duration duration(λ) is the difference between the end time h and the starting 

time g of λ, it holds that g = h – duration(λ). Here, h is equal to time[n] and duration(λ) is 
given by the parameter minLeapDuration. However, this parameter is an estimated value 

and hence, the computation may result in a starting time g that does not exist, i.e. is not an 

element of time[]. In that case, the largest among all those elements of time[] that are 
smaller than the computed starting time, is assumed to be the real starting time of λ. 

(6) Compute the clock bias error on the edges of the leap 

eg
(Window)

 and eh
(Window)

, i.e. the clock bias error at the starting time g and at the end time h of 

λ (with respect to the window), are computed. 

(7) Compute the leap’s height 

First, λ’s value is computed and then the latter is used to determine λ’s height: 

value(λ) = eh
(Window)

 – eg
(Window)

 and height(λ) = |value(λ)|. 

(8) Compare the leap’s height to the detection bound 

Let p be a variable that is meant to store a probability. Its value represents the probability 

that time[n] is not the starting time or the end time of an attack. 

λ’s height is compared to the detection bound of the algorithm, which is given by the 

parameter detectionBound. If the height is larger than the bound, it is likely that an attack 

began or ended approximately at time[n] and therefore, the value minProba is assigned to 

p. Else, it is unlikely that such an event occurred and hence, the value maxProba is 
assigned to the probability variable. 

(9) Determine the impact of signal outages on the probability 

In the previous step, either the value minProba or the value maxProba was assigned to p. 
The clock bias security check is, however, not meant to be a binary check, i.e. a check with 

only two possible outcomes. Therefore, signal outages that occurred inside the window are 

considered to enlarge the set of possible values for p. 

For a pre-defined data interval, it holds that the larger the difference between the window 

duration and the window length, the more (t,b)-points are missing between time[0] and 

time[n]. The ratio  winLength / (winDuration / dataInterval + 1)  is a measure for the 

availability of data between the borders of the window and is therefore called window 
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availability (denoted by winAvail). Thereby, the values 1 and 0 represent a signal outage 

impact of 0% and 100%, respectively. The smaller the window availability, the larger the 

probability that a p-value of minProba is the result of a false positive. Hence, if p is equal 
to minProba, its value is modified according to the formula 

.)1(1 )()( winAvailpp oldnew   Thereby, )1( )(oldp  is the initial probability that time[n] is 

the starting time or the end time of an attack. This probability is multiplied by the window 

availability, which is also a value in the range of [0,1]. The result of the latter operation is 

subtracted from 1 in order to get the new probability that time[n] is not guilty. 

(10) Output the probability 

The algorithm outputs its opinion on whether time[n] is guilty or not guilty, which 

basically is the value of p. Due to the adjustments of the probability in step 9, however, p 

might be larger than maxProba. If so, the algorithm outputs maxProba instead of p. 

 ALGORITHM TESTING 4.3.5

The detection algorithm was implemented in Java and six meaconing attacks were 

simulated in a row in order to test it. The receiver temperature was almost constant over 
the entire duration of the test and there were no signal outages. Approximately 17000 (t,b)-

points arrived at the Location Assurance Provider and for all but the first histLength (set 

to 60) of these points, the algorithm was executed once in order to give its opinion on 
whether the concerned point is guilty or not guilty. 

The values “4”, “0.65  10
–7

”, “0.05” and “0.95” were assigned to the parameters 

minLeapDuration, detectionBound, minProba and maxProba, respectively. The choice of 

these values is discussed in (Marnach, 2012). Here, we merely provide the justification of 
the detection bound’s value: When manually analysing leaps, it was found out that the 

repeater that is employed to simulate meaconing attacks causes leaps with a height of at 

least 0.65  10
–7

 seconds (cf. Section 4.3.3). The detection bound was chosen to be equal to 
the latter value. This means that the bound is set according to the adversary’s assumed 

power and goal. The smaller the detection bound, the more false positives will occur. 

Therefore, it is recommended to increase the bound whenever possible. 

The beginnings and the ends of all six attacks were found. Moreover, the algorithm 

detected two false positives, i.e. leaps that were caused neither by the beginning, nor by the 

end of an attack. By visualising these leaps, however, it became clear that they may also 

have been wrongly detected by a human observer. 

Overall, the experiment showed that it is possible to detect the beginnings and the ends of 

meaconing attacks automatically by using the detection algorithm. However, one also has 

to admit that the test was conducted under laboratory conditions, as the receiver’s 
temperature was extraordinary stable. 
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5. CONCLUSION 

The present section summarises the topics covered by this paper and outlines an idea that 

could further improve the clock bias security check. 

 SUMMARY OF FINDINGS 5.1

The LASP project, which is funded by ESA and realised by itrust consulting and the 

University of Luxembourg aims at compensating for the absence of authentication (of 
satellite signals towards civilian users) in satellite-based navigation systems. The Location 

Assurance Provider (LAP) is a component of the LASP architecture that runs so-called 

security checks to verify computed positions’ authenticity. These checks are algorithms 

that get as input data sent to the LAP by one or more user devices and that output an 
opinion on whether the analysed information is authentic. In this paper, we presented one 

of these algorithms, namely the Clock Bias Security Check. It was developed explicitly for 

the detection of meaconing attacks, i.e. attacks that intend to delay navigation signals. 

The theoretical background that the check is based on was provided in Section 2. As 

meaconing always introduces delays, timing information can be considered as one of the 

approaches to detect this type of attack. Thereby, a receiver’s clock bias, which is the 
difference between the value of the receiver’s clock and a pre-defined reference time, is of 

particular interest. 

The currently employed LASP user device was discussed in Section 3. Knowing the 

behaviour of the receiver that is part of this device was of particular importance for the 
development of the security check. Also, a possibility to simulate meaconing attacks by 

using a GNSS signal repeater was introduced in this section. 

Details on the check itself were provided in Section 4. First, a theory on the detection of 
the beginnings and the ends of meaconing attacks was established. This step resulted in an 

attack visualisation technique that is based on the computation of regression lines. Second, 

the knowledge that was gained during the manual attack visualisation step was used to 
design and implement an algorithm that is capable of detecting the beginnings and the ends 

of meaconing attacks automatically. This detection algorithm represents the clock bias 

security check. An experiment conducted in a controlled environment confirmed that the 

algorithm works properly: Six meaconing attacks were simulated by using the signal 
repeater and the security check was capable of detecting the beginnings and the ends of all 

six attacks, while resulting in no more than two false positives. 

 FUTURE WORK 5.1.1

First test results of the clock bias security check were collected and briefly described in 

this document. They look promising, but it is clear that more experiments must be 
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conducted before we can claim that the check is fully reliable. So far, the algorithm has, for 

example, only been used in combination with a data interval of 1 second, while it is 

designed to work with any data interval that remains constant over time. Besides testing 
the existing check and tuning its parameters, we believe that the algorithm itself could be 

further enhanced. One concrete suggestion for improvement is outlined in the following 

paragraph. 

The detection bound is a parameter that has to be set by the algorithm’s user, which in this 
case, is the Location Assurance Provider’s operator. The lower the bound, the smaller are 

the delays that can be detected. A lower bound, however, also leads to an augmented 

number of false positives. How low the bound may be without resulting in too many false 
positives depends on the environmental conditions under which the receiver is used, 

especially on its ambient temperature. As the temperature often does not change abruptly, 

it might be possible to adjust the detection bound automatically by considering data 

recorded in the past. The computation of the bound could be based on the clock bias error, 
on the clock bias itself, or even on the clock drift, which as mentioned in Section 3.2, is 

mainly influenced by the receiver’s temperature. In any case, it is preferable to find at any 

moment the lowest possible bound that leads to an acceptable number of false positives. 

Also, it is planned to run the algorithm on data recorded during a real meaconing attack to 

make sure that the observed leaps are not merely the result of unexpected side-effects of 

the employed attack simulation technique. 

One question that remains open is whether the clock bias security check will also work in 

combination with commercial off-the-shelf user devices, like smartphones. These devices’ 

internal clocks are far less accurate than that of the currently used receiver, which poses a 

threat to the effectiveness of the security check. 
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